Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intra-cluster Similarity Index Based on Fuzzy Rough Sets for Fuzzy C-Means Algorithm

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5009))

Included in the following conference series:

Abstract

Cluster validity indices have been used to evaluate the quality of fuzzy partitions. In this paper, we propose a new index, which uses concepts of Fuzzy Rough sets to evaluate the average intra-cluster similarity of fuzzy clusters produced by the fuzzy c-means algorithm. Experimental results show that contrasted with several well-known cluster validity indices, the proposed index can yield more desirable cluster number estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  2. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell 13(8), 841–847 (1991)

    Article  Google Scholar 

  3. Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-mean method. In: 5th Fuzzy Systems Symposium, Japan, pp. 247–250 (1989)

    Google Scholar 

  4. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 13(3), 370–379 (1995)

    Article  MathSciNet  Google Scholar 

  5. Kwon, S.H.: Cluster validity index for fuzzy clustering. Electron. Lett 34(22), 2176–2177 (1998)

    Article  Google Scholar 

  6. Kim, D., Lee, K.H., Lee, D.: On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition 37(10), 2561–2574 (2004)

    Google Scholar 

  7. Kim, Y., Kim, D., et al.: A cluster validation index for GK cluster analysis based on relative degree of sharing. Information Science 168(1-4), 225–242 (2004)

    MATH  Google Scholar 

  8. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Internat. J. General Systems 17(2–3), 191–209 (1990)

    Article  Google Scholar 

  9. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–222. Kluwer, The Netherlands (1992)

    Google Scholar 

  10. Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  11. Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)

    Google Scholar 

  12. Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough set. Fuzzy Sets Syst. 100(1-3), 327–342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mitra, S., Banka, H., Pedrycz, W.: Rough-fuzzy collaborative clustering. IEEE Trans. Syst., Man, Cybern. B, Cybern. 36(4), 795–805 (2006)

    Article  Google Scholar 

  14. Bezdek, J.C., Pal, N.R.: Some New Indexes of Cluster Validity. IEEE Trans. Syst., Man, Cybern. B, Cybern. 28(3), 301–315 (1998)

    Article  Google Scholar 

  15. Lingras, P., Yan, R., West, C.: Comparison of conventional and rough k-means clustering. In: Wang, G., et al. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 130–137. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guoyin Wang Tianrui Li Jerzy W. Grzymala-Busse Duoqian Miao Andrzej Skowron Yiyu Yao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Min, F., Liu, Q. (2008). Intra-cluster Similarity Index Based on Fuzzy Rough Sets for Fuzzy C-Means Algorithm. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2008. Lecture Notes in Computer Science(), vol 5009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79721-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79721-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79720-3

  • Online ISBN: 978-3-540-79721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics