Abstract
Cluster validity indices have been used to evaluate the quality of fuzzy partitions. In this paper, we propose a new index, which uses concepts of Fuzzy Rough sets to evaluate the average intra-cluster similarity of fuzzy clusters produced by the fuzzy c-means algorithm. Experimental results show that contrasted with several well-known cluster validity indices, the proposed index can yield more desirable cluster number estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)
Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell 13(8), 841–847 (1991)
Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-mean method. In: 5th Fuzzy Systems Symposium, Japan, pp. 247–250 (1989)
Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 13(3), 370–379 (1995)
Kwon, S.H.: Cluster validity index for fuzzy clustering. Electron. Lett 34(22), 2176–2177 (1998)
Kim, D., Lee, K.H., Lee, D.: On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition 37(10), 2561–2574 (2004)
Kim, Y., Kim, D., et al.: A cluster validation index for GK cluster analysis based on relative degree of sharing. Information Science 168(1-4), 225–242 (2004)
Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Internat. J. General Systems 17(2–3), 191–209 (1990)
Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–222. Kluwer, The Netherlands (1992)
Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)
Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)
Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough set. Fuzzy Sets Syst. 100(1-3), 327–342 (1998)
Mitra, S., Banka, H., Pedrycz, W.: Rough-fuzzy collaborative clustering. IEEE Trans. Syst., Man, Cybern. B, Cybern. 36(4), 795–805 (2006)
Bezdek, J.C., Pal, N.R.: Some New Indexes of Cluster Validity. IEEE Trans. Syst., Man, Cybern. B, Cybern. 28(3), 301–315 (1998)
Lingras, P., Yan, R., West, C.: Comparison of conventional and rough k-means clustering. In: Wang, G., et al. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 130–137. Springer, Heidelberg (2003)
UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, F., Min, F., Liu, Q. (2008). Intra-cluster Similarity Index Based on Fuzzy Rough Sets for Fuzzy C-Means Algorithm. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2008. Lecture Notes in Computer Science(), vol 5009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79721-0_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-79721-0_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79720-3
Online ISBN: 978-3-540-79721-0
eBook Packages: Computer ScienceComputer Science (R0)