Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Gene Selection with Rough Sets from Gene Expression Data

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5009))

Included in the following conference series:

Abstract

The main challenge of gene selection from gene expression dataset is to reduce the redundant genes without affecting discernibility between objects. A pipelined approach combining feature ranking together with rough sets attribute reduction for gene selection is proposed. Feature ranking is used to narrow down the gene space as the first step, top ranked genes are selected; the minimal reduct is induced by rough sets to eliminate the redundant attributes. An exploration of this approach on Leukemia gene expression data is conducted and good results are obtained with no preprocessing to the data. The experiment results show that this approach is successful for selecting high discriminative genes for cancer classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  2. Wang, L.P., Feng, C., Xie, X.: Accurate Cancer Classification Using Expressions of Very Few Genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4, 40–53 (2007)

    Article  Google Scholar 

  3. Au, A., Chan, K.C.C., Wong, A.K.C., Wang, Y.: Attribute Clustering for Grouping, Selection, and Classification of Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2, 83–101 (2005)

    Article  Google Scholar 

  4. Smet, F.D., Pochet, N.L.M.M., Engelen, K., Gorp, T.V., Hummelen, P.V., Marchal, K., Amant, F., Timmerman, D., Moor, B.D., Vergote, I.: Predicting the Clinical Behavior of Ovarian Cancer from Gene Expression Profiles. International Journal of Gynecological Cancer 16, 147–151 (2006)

    Article  Google Scholar 

  5. Wang, Y., Tetko, I.V., Hall, M.A., Frank, E., Facius, A., Mayer, K.F.X., Mewes, H.W.: Gene Selection from Microarray Data for Cancer Classification-A Machine Learning Approach. Computational Biology and Chemistry 29, 37–46 (2005)

    Article  MATH  Google Scholar 

  6. Ding, C.: Analysis of Gene Expression Profiles: Class Discovery and Leaf Ordering. In: 6th Annual Conference on Research in Computational Molecular Biology, pp. 127–136. ACM Press, New York (2002)

    Google Scholar 

  7. Pawlak, Z.: Rough Set- Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dorderecht (1991)

    Google Scholar 

  8. Wang, J., Waog, J.: Reduction Algorithms Based on Discernibly Matrix: The Ordered Attributes Method. Journal of Computer Science And Technology 16, 489–504 (2002)

    Article  Google Scholar 

  9. Miao, D.Q., Hu, G.R.: A Heuristic Algorithm for Reduction of Knowledge. Journal of Computer Research and Development 36, 681–684 (1999)

    Google Scholar 

  10. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics 16, 906–914 (2000)

    Article  Google Scholar 

  11. Valdes, J.J., Barton, A.J.: Gene Discovery in Leukemia Revisited: A Computational Intelligence Perspective. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 118–127. Springer, Heidelberg (2004)

    Google Scholar 

  12. Ding, C., Peng, H.C.: Minimum Redundancy Feature Selection from Microarray Gene Expression Data. Journal of Bioinformatics and Computational Biology 3, 185–205 (2003)

    Article  Google Scholar 

  13. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.: Tissue Classification with Gene Expression Profiles. In: 4th Annual International Conference on Computational Molecular Biology (RECOMB), pp. 54–64. Universal Academy Press, Tokyo (2000)

    Chapter  Google Scholar 

  14. Tseng, V.S., Kao, C.P.: Efficiently Mining Gene Expression Data via a Novel Parameterless Clustering Method. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2, 355–365 (2005)

    Article  Google Scholar 

  15. Mitra, S., Hayashi, Y.: Bioinformatics with Soft Computing. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews 36, 616–635 (2006)

    Article  Google Scholar 

  16. Fayyad, U.M., Irani, K.B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In: Proceedings of the 13th International Joint Conference of Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann, Chambery, France (1993)

    Google Scholar 

  17. Van, D.G.E., Leccia, M., Dekker, S., Jalbert, N., Amodeo, D., Byers, H.: Role of Zyxin in Differential Cell Spreading and Proliferation of Melanoma Cells and Melanocytes. J. Invest. Dermatol. 118, 246–254 (2002)

    Article  Google Scholar 

  18. Yagi, T., Morimoto, A., Eguchi, M., Hibi, S., Sako, M., Ishii, E., Mizutani, S., Imashuku, S., Ohki, M., Ichikawa, H.: Identification of a Gene Expression Signature Associated with Pediatric AML Prognosis. Blood 102, 1849–1856 (2003)

    Article  Google Scholar 

  19. Banerjee, M., Mitra, S., Banka, H.: Evolutinary-Rough Feature Selection in Gene Expression Data. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Application and Reviews 37, 622–632 (2007)

    Article  Google Scholar 

  20. Momin, B.F., Mitra, S., Datta Gupta, R.: Reduct Generation and Classification of Gene Expression Data. In: Proceeding of First International Conference on Hybrid Information Technology (ICHICT 2006), pp. 699–708. IEEE Press, New York (2006)

    Chapter  Google Scholar 

  21. Deb, K., Reddy, A.R.: Reliable Classification of Two Class Cancer Data Using Evolutionary Algorithms. BioSystems 72, 111–129 (2003)

    Article  Google Scholar 

  22. Cho, S.B., Ryu, J.: Classification Gene Expression Data of Cancer Using Classifier Ensemble with Mutually Exclusive Features. In: Proceedings of the IEEE, Special Issue on Bioinformatics Part-I: Advances and Challenges, pp. 1744–1753. IEEE Press, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guoyin Wang Tianrui Li Jerzy W. Grzymala-Busse Duoqian Miao Andrzej Skowron Yiyu Yao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, L., Miao, D., Zhang, H. (2008). Efficient Gene Selection with Rough Sets from Gene Expression Data. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2008. Lecture Notes in Computer Science(), vol 5009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79721-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79721-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79720-3

  • Online ISBN: 978-3-540-79721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics