Nothing Special   »   [go: up one dir, main page]

Skip to main content

Linear Equation on Polynomial Single Cycle T-Functions

  • Conference paper
Information Security and Cryptology (Inscrypt 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4990))

Included in the following conference series:

Abstract

Polynomial functions are widely used in the design of cryptographic transformations such as block ciphers, hash functions and stream ciphers, which belong to the category of T-functions. When a polynomial function is used as state transition function in a pseudorandom generator, it is usually required that the polynomial function generates a single cycle. In this paper, we first present another proof of the sufficient and necessary condition on a polynomial function \(f(\mathbf{x})=c_0+c_1\mathbf{x}+c_2\mathbf{x}^2+\cdots+c_m\mathbf{x}^m \bmod 2^n(n \geq 3)\) being a single cycle T-function. Then we give a general linear equation on the sequences {x i } generated by these T-functions, that is,

$$ \mathbf{x}_{i+2^{j-1},j}=\mathbf{x}_{i,j}+\mathbf{x}_{i,j-1} +ajA_{i,2}+a(j-1)+b\bmod 2,3\leq j \leq n-1, $$

where A i,2 is a sequence of period 4, a and b are constants determined by the coefficients c i . This equation shows that the sequences generated by polynomial single cycle T-functions have potential secure problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hong, J., Lee, D.H., Yeom, Y., Han, D.: A New Class of Single Cycle T-Functions. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 68–82. Springer, Heidelberg (2005)

    Google Scholar 

  2. Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 470–483. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Klimov, A., Shamir, A.: Cryptographic Applications of T-Functions. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 248–261. Springer, Heidelberg (2004)

    Google Scholar 

  4. Klimov, A., Shamir, A.: New Cryptographic Primitives Based on Multiword T-Functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 1–15. Springer, Heidelberg (2004)

    Google Scholar 

  5. Klimov, A.: Application of T-functions in Cryptography, PhD Thesis, Weizmann Institute of Science (2005)

    Google Scholar 

  6. Larin, M.V.: Transitive Polynomial Transformations of Residue Class Rings. Discrete Mathematics and Applications, 141–154 (February 2002)

    Google Scholar 

  7. Molland, H., Helleseth, T.: Linear properties in T-functions. IEEE Trans. Inform. Theory, 5151–5157 (November 2006)

    Google Scholar 

  8. Rivest, R.: Permutation Polynomials Modulo 2ω. Finite Fields and their Applications, 287–292 (September 2001)

    Google Scholar 

  9. Wang, J.S., Qi, W.F.: Trace Presentation of Bent Sequence Families. Journal of Communications(China), 8–13 (January 2006)

    Google Scholar 

  10. Wang, J.S., Qi, W.F.: Analysis of Design Interleaved ZCZ Sequence Family. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 129–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Wang, J.S., Qi, W.F.: A Class of Binary ZCZ Sequence Families Constructed by Extending Period Twice. Journal of Electronics(China), 301–304 (May 2007)

    Google Scholar 

  12. Zhang, W.Y., Wu, C.K.: The Algebraic Normal Form, Linear Complexity and k-Error Linear Complexity of Single-Cycle T-Function. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 391–401. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dingyi Pei Moti Yung Dongdai Lin Chuankun Wu

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, JS., Qi, WF. (2008). Linear Equation on Polynomial Single Cycle T-Functions. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds) Information Security and Cryptology. Inscrypt 2007. Lecture Notes in Computer Science, vol 4990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79499-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79499-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79498-1

  • Online ISBN: 978-3-540-79499-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics