Nothing Special   »   [go: up one dir, main page]

Skip to main content

Functional Principal Points and Functional Cluster Analysis

  • Chapter
Computational Intelligence Paradigms

Part of the book series: Studies in Computational Intelligence ((SCI,volume 137))

Abstract

In this chapter, we deal with functional principal points and functional cluster analysis. The k principal points [4] are defined as the set of k points which minimizes the sum of expected squared distances from every points in the distribution to the nearest points of the set, and are mathematically equivalent to centers of gravity by k-means clustering [3]. The concept of principal points can be extended for functional data analysis [16]. We call the extended principal points functional principal points.

Random function [6] is defined in a probability space, and functional principal points of random functions have a close relation to functional cluster analysis. We derive functional principal points of polynomial random functions using orthonormal basis transformation. For functional data according to Gaussian random functions, we discuss the relation between the optimum clustering of the functional data and the functional principal points.

We also evaluate the numbers of local solutions in functional k-means clustering of polynomial random functions using orthonormal basis transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Araki, Y., Konishi, S., Imoto, S.: Functional discriminant analysis for microarray gene expression data via radial basis function networks. In: Proceedings of COMPSTAT, pp. 613–620 (2004)

    Google Scholar 

  2. Araki, Y., Konishi, S.: Functional regression modeling via reguralized basis expansions and model selection, MHF Preprint Series, Kyushu University (2005)

    Google Scholar 

  3. Forgy, E.: Cluster analysis of multivariate data: Efficiency versus interpretability of classification. Biometrics 21, 768–780 (1965)

    Google Scholar 

  4. Flury, B.: Principal points. Biometrika 77(1), 33–41 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flury, B.: Estimation of principal points. Journal of the Royal Statistical Society, Series C, Applied Statistics 42(1), 139–151 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Ibragimov, I.A., Rozanov, Y.A.: Gaussian Random Processes. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  7. James, G.M., Hastie, T.J., Sugar, C.A.: Principal component models for sparse functional data. Biometrika 87, 587–602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Transactions on Communications 28, 84–95 (1980)

    Article  Google Scholar 

  9. Mizuta, M.: Functional multidimensional scaling. In: Proceedings of the 10th Japan and Korea Joint Conference of Statistics, pp. 77–82 (2000)

    Google Scholar 

  10. Mizuta, M.: Cluster analysis for functional data. In: Proceedings of the 4th Conference of the Asian Regional Section of the International Association for Statistical Computing, pp. 219–221 (2002)

    Google Scholar 

  11. Mizuta, M.: K-means method for functional data. Bulletin of International Statistical Institute, 54th Session, Book 2, pp. 69–71 (2003)

    Google Scholar 

  12. Muraki, C., Ohtaki, M., Mizuta, M.: Principal points analysis of daily weather maps at the Far East region in the summer seasons of 1993-1995 (in Japanese). Japanese Journal of Applied Statistics 27(1), 17–31 (1998)

    Google Scholar 

  13. Ramsay, J.O.: When the data are functions. Psychometrika 47, 379–396 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  15. Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis: Methods and Case Studies. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  16. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, Heidelberg (2005)

    Google Scholar 

  17. Rossi, F., Conan-Guez, B., El Golli, A.: Clustering functional data with the SOM algorithm. In: Proceedings of European Symposium on Artificial Neural Networks 2004, pp. 305–312 (2004)

    Google Scholar 

  18. Shimizu, N., Mizuta, M., Sato, Y.: Some properties of principal points (in Japanese). Japanese Journal of Applied Statistics 27(1), 1–16 (1998)

    Google Scholar 

  19. Shimokawa, M., Mizuta, M., Sato, Y.: An expansion of functional regression analysis (in Japanese). Japanese Journal of Applied Statistics 29(1), 27–39 (2000)

    Article  Google Scholar 

  20. Tarpey, T., Kinateder, K.: Clustering functional data. Journal of Classification 20, 93–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lakhmi C. Jain Mika Sato-Ilic Maria Virvou George A. Tsihrintzis Valentina Emilia Balas Canicious Abeynayake

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimizu, N., Mizuta, M. (2008). Functional Principal Points and Functional Cluster Analysis. In: Jain, L.C., Sato-Ilic, M., Virvou, M., Tsihrintzis, G.A., Balas, V.E., Abeynayake, C. (eds) Computational Intelligence Paradigms. Studies in Computational Intelligence, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79474-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79474-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79473-8

  • Online ISBN: 978-3-540-79474-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics