Abstract
In this chapter, we deal with functional principal points and functional cluster analysis. The k principal points [4] are defined as the set of k points which minimizes the sum of expected squared distances from every points in the distribution to the nearest points of the set, and are mathematically equivalent to centers of gravity by k-means clustering [3]. The concept of principal points can be extended for functional data analysis [16]. We call the extended principal points functional principal points.
Random function [6] is defined in a probability space, and functional principal points of random functions have a close relation to functional cluster analysis. We derive functional principal points of polynomial random functions using orthonormal basis transformation. For functional data according to Gaussian random functions, we discuss the relation between the optimum clustering of the functional data and the functional principal points.
We also evaluate the numbers of local solutions in functional k-means clustering of polynomial random functions using orthonormal basis transformation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araki, Y., Konishi, S., Imoto, S.: Functional discriminant analysis for microarray gene expression data via radial basis function networks. In: Proceedings of COMPSTAT, pp. 613–620 (2004)
Araki, Y., Konishi, S.: Functional regression modeling via reguralized basis expansions and model selection, MHF Preprint Series, Kyushu University (2005)
Forgy, E.: Cluster analysis of multivariate data: Efficiency versus interpretability of classification. Biometrics 21, 768–780 (1965)
Flury, B.: Principal points. Biometrika 77(1), 33–41 (1990)
Flury, B.: Estimation of principal points. Journal of the Royal Statistical Society, Series C, Applied Statistics 42(1), 139–151 (1993)
Ibragimov, I.A., Rozanov, Y.A.: Gaussian Random Processes. Springer, Heidelberg (1978)
James, G.M., Hastie, T.J., Sugar, C.A.: Principal component models for sparse functional data. Biometrika 87, 587–602 (2000)
Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Transactions on Communications 28, 84–95 (1980)
Mizuta, M.: Functional multidimensional scaling. In: Proceedings of the 10th Japan and Korea Joint Conference of Statistics, pp. 77–82 (2000)
Mizuta, M.: Cluster analysis for functional data. In: Proceedings of the 4th Conference of the Asian Regional Section of the International Association for Statistical Computing, pp. 219–221 (2002)
Mizuta, M.: K-means method for functional data. Bulletin of International Statistical Institute, 54th Session, Book 2, pp. 69–71 (2003)
Muraki, C., Ohtaki, M., Mizuta, M.: Principal points analysis of daily weather maps at the Far East region in the summer seasons of 1993-1995 (in Japanese). Japanese Journal of Applied Statistics 27(1), 17–31 (1998)
Ramsay, J.O.: When the data are functions. Psychometrika 47, 379–396 (1982)
Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, Heidelberg (1997)
Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis: Methods and Case Studies. Springer, Heidelberg (2002)
Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, Heidelberg (2005)
Rossi, F., Conan-Guez, B., El Golli, A.: Clustering functional data with the SOM algorithm. In: Proceedings of European Symposium on Artificial Neural Networks 2004, pp. 305–312 (2004)
Shimizu, N., Mizuta, M., Sato, Y.: Some properties of principal points (in Japanese). Japanese Journal of Applied Statistics 27(1), 1–16 (1998)
Shimokawa, M., Mizuta, M., Sato, Y.: An expansion of functional regression analysis (in Japanese). Japanese Journal of Applied Statistics 29(1), 27–39 (2000)
Tarpey, T., Kinateder, K.: Clustering functional data. Journal of Classification 20, 93–114 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shimizu, N., Mizuta, M. (2008). Functional Principal Points and Functional Cluster Analysis. In: Jain, L.C., Sato-Ilic, M., Virvou, M., Tsihrintzis, G.A., Balas, V.E., Abeynayake, C. (eds) Computational Intelligence Paradigms. Studies in Computational Intelligence, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79474-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-79474-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79473-8
Online ISBN: 978-3-540-79474-5
eBook Packages: EngineeringEngineering (R0)