Nothing Special   »   [go: up one dir, main page]

Skip to main content

Identification of Transcription Factor Binding Sites in Promoter Regions by Modularity Analysis of the Motif Co-occurrence Graph

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Included in the following conference series:

  • 970 Accesses

Abstract

Many algorithms have been proposed to date for the problem of finding biologically significant motifs in promoter regions. They can be classified into two large families: combinatorial methods and probabilistic methods. Probabilistic methods have been used more extensively, since their output is easier to interpret. Combinatorial methods have the potential to identify hard to detect motifs, but their output is much harder to interpret, since it may consist of hundreds or thousands of motifs. In this work, we propose a method that processes the output of combinatorial motif finders in order to find groups of motifs that represent variations of the same motif, thus reducing the output to a manageable size. This processing is done by building a graph that represents the co-occurrences of motifs, and finding communities in this graph. We show that this innovative approach leads to a method that is as easy to use as a probabilistic motif finder, and as sensitive to low quorum motifs as a combinatorial motif finder. The method was integrated with two combinatorial motif finders, and made available on the Web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sandve, G., Drablos, F.: A survey of motif discovery methods in an integrated framework. Biology Direct. 1(1), 11 (2006)

    Article  Google Scholar 

  2. Segal, E., Sharan, R.: A discriminative model for identifying spatial cis-regulatory modules. Journal of Computational Biology 12(6), 822–834 (2005)

    Article  Google Scholar 

  3. Buhler, J., Tompa, M.: Finding motifs using random projections. Journal of Computational Biology 9(2), 225–242 (2002)

    Article  Google Scholar 

  4. Bailey, T., Elkan, C.: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28–36 (1994)

    Google Scholar 

  5. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.: Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 262(5131), 208–214 (1993)

    Article  Google Scholar 

  6. Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M.: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology 16, 939–945 (1998)

    Article  Google Scholar 

  7. Liu, X., Brutlag, D.L., Liu, J.S.: BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. In: Pacific Symposium on Biocomputing, vol. 6, pp. 127–138 (2001)

    Google Scholar 

  8. Sagot, M.F.: Spelling approximate repeated or common motifs using a suffix tree. Latin 98, 111–127 (1998)

    Google Scholar 

  9. Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding subtle signals in DNA sequences. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, vol. 8, pp. 269–278 (2000)

    Google Scholar 

  10. Carvalho, A.M., Freitas, A.T., Oliveira, A.L., Sagot, M.-F.: An efficient algorithm for the identification of structured motifs in DNA promoter sequences. IEEE Transactions on Computational Biology and Bioinformatics 3(2), 126–140 (2006)

    Article  Google Scholar 

  11. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suxffix tree with an application to promoter and regulatory site consensus identification. Journal of Computational Biology 7(3-4), 345–362 (2000)

    Article  Google Scholar 

  12. Mendes, N., Casimiro, A., Santos, P., Sá-Correia, I., Oliveira, A., Freitas, A.: MUSA: A parameter free algorithm for the identification of biologically significant motifs. Bioinformatics 22, 2996–3002 (2006)

    Article  Google Scholar 

  13. Kankainen, M., Loytynoja, A.: MATLIGN: a motif clustering, comparison and matching tool. BMC Bioinformatics 8(1), 189 (2007)

    Article  Google Scholar 

  14. Mahony, S., Benos, P.V.: STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Research (2007)

    Google Scholar 

  15. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)

    Article  Google Scholar 

  17. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)

    Article  Google Scholar 

  18. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)

    Article  Google Scholar 

  19. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  20. Teixeira, M.C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A.R., Mira, N.P., Alenquer, M., Freitas, A.T., Oliveira, A.L., Sá-Correia, I.: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in saccharomyces cerevisiae. Nucleic Acids Research 34, D446–D451 (2006)

    Article  Google Scholar 

  21. DeRisi, J., van den Hazel, B., Marc, P., Balzi, E., Brown, P., Jack, C., Goffeau, A.: Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Letters 470, 156–160 (2000)

    Article  Google Scholar 

  22. Courel, M., Lallet, S., Camadro, J.M., Blaiseau, P.L.: Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Molecular Cell Biology 25(15), 6760–6771 (2005)

    Article  Google Scholar 

  23. Cohen, B.A., Pilpel, Y., Mitra, R.D., Church, G.M.: Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. Molecular Biology of the Cell 13(7), 1608–1614 (2002)

    Article  Google Scholar 

  24. Teixeira, M.C., Fernandes, A.R., Mira, N.P., Becker, J.D., Sá-Correia, I.: Early transcriptional response of Saccharomyces cerevisiae to stress imposed by the herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Yeast Research 6(2), 230–248 (2006)

    Article  Google Scholar 

  25. Blaiseau, P.L., Lesuisse, E., Camadro, J.M.: Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. Journal of Biological Chemistry 276(36), 34221–34226 (2001)

    Article  Google Scholar 

  26. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.-B., Reynolds, D.B., Yoo, J., Jennings, E.G., Zeitlinger, J., Pokholok, D.K., Kellis, M., Rolfe, P.A., Takusagawa, K.T., Lander, E.S., Gifford, D.K., Fraenkel, E., Young, R.A.: Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004), 99–104 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Francisco, A.P., Oliveira, A.L., Freitas, A.T. (2008). Identification of Transcription Factor Binding Sites in Promoter Regions by Modularity Analysis of the Motif Co-occurrence Graph. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics