Nothing Special   »   [go: up one dir, main page]

Skip to main content

Speeding up Dynamic Programming for Some NP-Hard Graph Recoloring Problems

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4978))

Abstract

A vertex coloring of a tree is called convex if each color induces a connected component. The NP-hard Convex Recoloring problem on vertex-colored trees asks for a minimum-weight change of colors to achieve a convex coloring. For the non-uniformly weighted model, where the cost of changing a vertex v to color c depends on both v and c, we improve the running time on trees from O(Δ κ·κn) to O(3κ·κn), where Δ is the maximum vertex degree of the input tree T, κ is the number of colors, and n is the number of vertices in T. In the uniformly weighted case, where costs depend only on the vertex to be recolored, one can instead parameterize on the number of bad colors β ≤ κ, which is the number of colors that do not already induce a connected component. Here, we improve the running time from O(Δ β·βn) to O(3β·βn). For the case where the weights are integers bounded by M, using fast subset convolution, we further improve the running time with respect to the exponential part to O(2κ·κ 4 n 2 M log2(nM)) and O(2β·β 4 n 2 M log2(nM)), respectively. Finally, we use fast subset convolution to improve the exponential part of the running time of the related 1-Connected Coloring Completion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bachoore, E.H., Bodlaender, H.L.: Convex recoloring of leaf-colored trees. In: Proc. 3rd ACiD. Texts in Algorithmics, vol. 9, pp. 19–33. College Publications, London (2007)

    Google Scholar 

  2. Bar-Yehuda, R., Feldman, I., Rawitz, D.: Improved approximation algorithm for convex recoloring of trees. Theory of Computing Systems, (to appear, 2007)

    Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. 39th STOC, pp. 67–74. ACM Press, New York (2007)

    Google Scholar 

  4. Blum, C.: Revisiting dynamic programming for finding optimal subtrees in trees. European Journal of Operational Research 177(1), 102–115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Weyer, M.: Convex and connected recolorings of trees and graphs (unpublished manuscript, 2005)

    Google Scholar 

  6. Bodlaender, H.L., Fellows, M.R., Langston, M.A., Ragan, M.A., Rosamond, F.A., Weyer, M.: Kernelization for convex recoloring. In: Proc. 2nd ACiD. Texts in Algorithmics, vol. 7, pp. 23–35. College Publications, London (2006)

    Google Scholar 

  7. Bodlaender, H.L., Fellows, M.R., Langston, M.A., Ragan, M.A., Rosamond, F.A., Weyer, M.: Quadratic kernelization for convex recoloring of trees. In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp. 86–96. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Chor, B., Fellows, M.R., Ragan, M.A., Razgon, I., Rosamond, F.A., Snir, S.: Connected coloring completion for general graphs: Algorithms and complexity. In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp. 75–85. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  10. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  12. Fürer, M.: Faster integer multiplication. In: Proc. 39th STOC, pp. 57–66. ACM Press, New York (2007)

    Google Scholar 

  13. Lingas, A., Wahlen, M.: On exact complexity of subgraph homeomorphism. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 256–261. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Maffioli, F.: Finding a best subtree of a tree. Technical Report 91.041, Politecnico di Milano, Dipartimento di Elettronica, Italy (1991)

    Google Scholar 

  15. Moran, S., Snir, S.: Convex recolorings of strings and trees: Definitions, hardness results and algorithms. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 218–232. Springer, Heidelberg (2005) (to appear in Journal of Computer and System Sciences)

    Google Scholar 

  16. Moran, S., Snir, S.: Efficient approximation of convex recolorings. Journal of Computer and System Sciences 73(7), 1078–1089 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moran, S., Snir, S., Sung, W.-K.: Partial convex recolorings of trees and galled networks: Tight upper and lower bounds (February 2007) (manuscript)

    Google Scholar 

  18. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  19. Ponta, O.: The Fixed-Parameter Approach to the Convex Recoloring Problem. Diplomarbeit, Mathematisches Institut, Ruprecht-Karls-Universität. Springer, Heidelberg (2007)

    Google Scholar 

  20. Razgon, I.: A 2O(k) poly(n) algorithm for the parameterized convex recoloring problem. Information Processing Letters 104(2), 53–58 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manindra Agrawal Dingzhu Du Zhenhua Duan Angsheng Li

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ponta, O., Hüffner, F., Niedermeier, R. (2008). Speeding up Dynamic Programming for Some NP-Hard Graph Recoloring Problems. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79228-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79228-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79227-7

  • Online ISBN: 978-3-540-79228-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics