Nothing Special   »   [go: up one dir, main page]

Skip to main content

Local 7-Coloring for Planar Subgraphs of Unit Disk Graphs

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2008)

Abstract

The problem of computing locally a coloring of an arbitrary planar subgraph of a unit disk graph is studied. Each vertex knows its coordinates in the plane, can directly communicate with all its neighbors within unit distance. Using this setting, first a simple algorithm is given whereby each vertex can compute its color in a 9-coloring of the planar graph using only information on the subgraph located within at most 9 hops away from it in the original unit disk graph. A more complicated algorithm is then presented whereby each vertex can compute its color in a 7-coloring of the planar graph using only information on the subgraph located within a constant number of hops away from it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. wireless networks 7, 609–616 (2001)

    Article  MATH  Google Scholar 

  2. Caragiannis, I., Fishkin, A.V., Kaklamanis, C., Papaioannou, E.: A tight bound for online coloring of disk graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 78–88. Springer, Heidelberg (2005)

    Google Scholar 

  3. Chavez, E., Dobrev, S., Kranakis, E., Opatrny, J., Stacho, L., Urrutia, J.: Local construction of planar spanners in unit disk graphs with irregular transmission ranges. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 286–297. Springer, Heidelberg (2005)

    Google Scholar 

  4. Dörre, P.: Every planar graph is 4-colourable and 5-choosable a joint proof. Fachhochschule Südwestfalen (University of Applied Sciences) (unpublished note)

    Google Scholar 

  5. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systemic Zoology 18, 259–278 (1972)

    Article  Google Scholar 

  6. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Distributed Computing 7, 55–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gräf, A., Stumpf, M., Weißenfels, G.: On coloring unit disk graphs. Algorithmica 20(3), 277–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. of 11th Canadian Conference on Computational Geometry, August 1999, pp. 51–54 (1999)

    Google Scholar 

  9. Linial, N.: Locality in distributed graph algorithms. SIAM J. COMP. 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25(1), 59–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miyamoto, Y., Matsui, T.: Multicoloring unit disk graphs on triangular lattice points. In: SODA, pp. 895–896. SIAM, Philadelphia (2005)

    Google Scholar 

  12. Thomassen, C.: Every planar graph is 5-choosable. Combinatorial Theory Series B 62(1), 180–181 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tuza, Z., Voigt, M.: A note on planar 5-list colouring: non-extendability at distance 4. Discrete Mathematics 251(1), 169–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner for wireless ad hoc networks. In: DialM: Proceedings of the Discrete Algorithms and Methods for Mobile Computing & Communications (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manindra Agrawal Dingzhu Du Zhenhua Duan Angsheng Li

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J. et al. (2008). Local 7-Coloring for Planar Subgraphs of Unit Disk Graphs. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79228-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79228-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79227-7

  • Online ISBN: 978-3-540-79228-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics