Abstract
In this paper, we will present observer and output-based controller design methods for linear complementarity systems (LCS) employing a passivity approach. Given various inherent properties of LCS, such as the presence of state jumps, mode dynamics described by DAEs, and regions (“invariants”) for certain modes being lower dimensional, several proposed observers and controllers for other classes of hybrid dynamical systems do not apply. We will provide sufficient conditions for the observer design for a LCS, which is effective also in the presence of state jumps. Using the certainty equivalence approach we obtain output-based controllers for which we will derive a separation principle.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid systems. IEEE Transactions on Automatic Control 43, 483 (1998)
Heemels, W., Schumacher, J., Weiland, S.: Linear complementarity systems. SIAM Journal on Applied Mathematics, 1234–1269 (2000)
Camlibel, M., Heemels, W., Schumacher, J.: On linear passive complementarity systems. European Journal of Control 8, 220–237 (2002)
Shen, J., Pang, J.: Semicopositive lineaer complementarity systems. Intern. J. Robust and Nonlinear Control 17(15), 1367–1386 (2007)
Camlibel, M.: Complementarity methods in the analysis of piecewise linear dynamical systems. PhD thesis Tilburg University (2001)
Brogliato, B.: Some perspectives on the analysis and control of complementarity systems. IEEE Trans Automatic Control 48, 918–935 (2003)
Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. System and Control Letters 55, 45–51 (2006)
Heemels, W., Schumacher, J., Weiland, S.: Projected dynamical systems in a complementarity formalism. Operations Research Letters 27(2), 83–91 (2000)
Camlibel, M., Heemels, W., van der Schaft, A., Schumacher, J.: Switched networks and complementarity. IEEE Trans. Circuits Systems-I 50, 1036–1046 (2003)
Camlibel, M., Heemels, W., Schumacher, J.: Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuits Systems-I 49(3), 349–357 (2002)
Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O automata. In: Proc. Workshop Verification and Control of Hybrid Systems, pp. 496–510 (1996)
Branicky, M., Borkar, V., Mitter, S.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automatic Control 43(1), 31–45 (1998)
Lygeros, J., Johansson, K., Simic, S., Zhang, J., Sastry, S.: Dynamical properties of hybrid automata. IEEE Trans. Aut. Control 48(1) (2003)
Heemels, W., Camlibel, M., van der Schaft, A., Schumacher, J.: Modelling, well-posedness, and stability of switched electrical networks. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 249–266. Springer, Heidelberg (2003)
Cai, C., Teel, A., Goebel, R.: Smooth Lyapunov functions for hybrid systems. Part I: Existence is equivalent to robustness. IEEE Trans. Automatic Control 52(7), 1264–1277 (2007)
Sontag, E.: Nonlinear regulation: The piecewise linear approach. IEEE Trans. Automatic Control 26(2), 346–358 (1981)
Heemels, W., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37(7) (2001)
De Schutter, B., van den Boom, T.: On model predictive control for max-min-plus-scaling discrete event systems. Automatica 37(7), 1049–1056 (2001)
Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–427 (1999)
Alessandri, A., Coletta, P.: Design of Luenberger observers for a class of hybrid linear systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 7–18. Springer, Heidelberg (2001)
Iulia Bara, G., Daafouz, J., Kratz, F., Iung, C.: State estimation for a class of hybrid systems. In: Int. Conf. Automation of Mixed Processes, pp. 313–316 (2000)
Petterson, S.: Switched state jump observers for switched systems. In: Proceedings of the IFAC World Congress, Prague, Czech Republic (2005)
Juloski, A., Heemels, W., Weiland, S.: Observer design for a class of piecewise linear systems. Intern. J. Robust and Nonlinear Control 17(15), 1387–1404 (2007)
Pavlov, A., van de Wouw, N., Nijmeijer, H.: Convergent piecewise affine systems: analysis and design. In: Proc. CDC/ECC, Sevilla, Spain (2005)
Arcak, M., Kokotović, P.: Observer based control of systems with slope-restricted nonlinearities. IEEE Trans. Automatic Control 46(7), 1146–1150 (2001)
Arcak, M.: Certainty-equivalence output-feedback design with circle-criterion observers. IEEE Trans. Automatic Control 50, 905–909 (2005)
Fan, X., Arcak, M.: Observer design for systems with multivariable monotone nonlinearities. Systems and Control Letters 50, 319–330 (2003)
Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Aut. Control 43, 397–401 (1998)
Osorio, M., Moreno, J.: Dissipative design of observers for multivalued nonlinear systems. In: Proc. CDC, pp. 5400–5405 (2006)
Cottle, R., Pang, J.S., Stone, R.: The Linear Complementarity Problem. Academic Press, Boston (1992)
Willems, J.: Dissipative dynamical systems. Archive for Rational Mechanics and Analysis 45, 321–393 (1972)
Heemels, W., Camlibel, M., Brogliato, B., Schumacher, J.: Observer-based control of linear complementarity systems. Technical report, Eindhoven University of Technology, Department of Mechanical Engineering, DCT report DCT 2008.002 (2008)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heemels, W.P.M.H., Camlibel, M.K., Brogliato, B., Schumacher, J.M. (2008). Observer-Based Control of Linear Complementarity Systems. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-78929-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78928-4
Online ISBN: 978-3-540-78929-1
eBook Packages: Computer ScienceComputer Science (R0)