Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rectangles, Fringes, and Inverses

  • Conference paper
Relations and Kleene Algebra in Computer Science (RelMiCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4988))

Included in the following conference series:

Abstract

Relational composition is an associative operation; therefore semigroup considerations often help in relational algebra. We study here some less known such effects and relate them with maximal rectangles inside a relation, i.e., with the basis of concept lattice considerations. The set of points contained in precisely one maximal rectangle makes up the fringe. We show that the converse of the fringe sometimes acts as a generalized inverse of a relation. Regular relations have a generalized inverse. They may be characterized by an algebraic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doignon, J.-P., Falmagne, J.-C.: Matching Relations and the Dimensional Structure of Social Sciences. Math. Soc. Sciences 7, 211–229 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ducamp, A., Falmagne, J.-C.: Composite Measurement. J. Math. Psychology 6, 359–390 (1969)

    MATH  MathSciNet  Google Scholar 

  3. Haralick, R.M.: The diclique representation and decomposition of binary relations. J. ACM 21, 356–366 (1974)

    MATH  MathSciNet  Google Scholar 

  4. Kim, K.H.: Boolean Matrix Theory and Applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 70. Marcel Dekker, New York – Basel (1982)

    Google Scholar 

  5. Monjardet, B.: Axiomatiques et proprietés des quasi-ordres. Mathematiques et Sciences Humaines 16(63), 51–82 (1978)

    MathSciNet  Google Scholar 

  6. Pirlot, M.: Synthetic description of a semiorder. Discrete Appl. Mathematics 31, 299–308 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pirlot, M., Vincke, P.: Semiorders — Properties, Representations, Applications. Theory and Decision Library, Mathematical and Statistical Methods, Series B, vol. 36. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  8. Schmidt, G., Ströhlein, T.: Relationen und Graphen. Mathematik für Informatiker. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  9. Schmidt, G., Ströhlein, T.: Relations and Graphs — Discrete Mathematics for Computer Scientists. In: EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)

    Google Scholar 

  10. Winter, M.: Decomposing Relations Into Orderings. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2003. LNCS, vol. 3051, pp. 261–272. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Berghammer Bernhard Möller Georg Struth

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, G. (2008). Rectangles, Fringes, and Inverses. In: Berghammer, R., Möller, B., Struth, G. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2008. Lecture Notes in Computer Science, vol 4988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78913-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78913-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78912-3

  • Online ISBN: 978-3-540-78913-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics