Abstract
Relational composition is an associative operation; therefore semigroup considerations often help in relational algebra. We study here some less known such effects and relate them with maximal rectangles inside a relation, i.e., with the basis of concept lattice considerations. The set of points contained in precisely one maximal rectangle makes up the fringe. We show that the converse of the fringe sometimes acts as a generalized inverse of a relation. Regular relations have a generalized inverse. They may be characterized by an algebraic condition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Doignon, J.-P., Falmagne, J.-C.: Matching Relations and the Dimensional Structure of Social Sciences. Math. Soc. Sciences 7, 211–229 (1984)
Ducamp, A., Falmagne, J.-C.: Composite Measurement. J. Math. Psychology 6, 359–390 (1969)
Haralick, R.M.: The diclique representation and decomposition of binary relations. J. ACM 21, 356–366 (1974)
Kim, K.H.: Boolean Matrix Theory and Applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 70. Marcel Dekker, New York – Basel (1982)
Monjardet, B.: Axiomatiques et proprietés des quasi-ordres. Mathematiques et Sciences Humaines 16(63), 51–82 (1978)
Pirlot, M.: Synthetic description of a semiorder. Discrete Appl. Mathematics 31, 299–308 (1991)
Pirlot, M., Vincke, P.: Semiorders — Properties, Representations, Applications. Theory and Decision Library, Mathematical and Statistical Methods, Series B, vol. 36. Kluwer Academic Publishers, Dordrecht (1997)
Schmidt, G., Ströhlein, T.: Relationen und Graphen. Mathematik für Informatiker. Springer, Heidelberg (1989)
Schmidt, G., Ströhlein, T.: Relations and Graphs — Discrete Mathematics for Computer Scientists. In: EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)
Winter, M.: Decomposing Relations Into Orderings. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2003. LNCS, vol. 3051, pp. 261–272. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmidt, G. (2008). Rectangles, Fringes, and Inverses. In: Berghammer, R., Möller, B., Struth, G. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2008. Lecture Notes in Computer Science, vol 4988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78913-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-78913-0_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78912-3
Online ISBN: 978-3-540-78913-0
eBook Packages: Computer ScienceComputer Science (R0)