Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cardinality in Allegories

  • Conference paper
Relations and Kleene Algebra in Computer Science (RelMiCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4988))

Included in the following conference series:

Abstract

In this paper we want to investigate two notions of the cardinality of relations in the context of allegories. The different axiom systems are motivated on the existence of injective and surjective functions, respectively. In both cases we provide a canonical cardinality function and show that it is initial in the category of all cardinality functions over the given allegory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berghammer, R.: Computation of Cut Completions and Concept Lattices Using Relational Algebra and RelView. JoRMiCS 1, 50–72 (2004)

    Google Scholar 

  2. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  3. Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in Computer Science. Advances in Computer ScienceVienna. Springer, Vienna (1997)

    MATH  Google Scholar 

  4. Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  5. Grätzer, G.: General lattice theory, 2nd edn. Birkhäuser, Basel (2003)

    Google Scholar 

  6. Kawahara, Y.: On the Cardinality of Relations. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kawahara, Y., Winter, M.: On the Tabular Closure of a Sub-Allegory of a Tabular Allegory (to appear)

    Google Scholar 

  8. Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer, Heidelberg (1989); English version: Relations and Graphs. Discrete Mathematics for Computer Scientists, EATCS Monographs on Theoret. Comput. Sci., Springer, Heidelberg (1993).

    MATH  Google Scholar 

  9. Winter, M.: Goguen Categories. A Categorical Approach to L-Fuzzy Relations. Trends in Logic 25 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Berghammer Bernhard Möller Georg Struth

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawahara, Y., Winter, M. (2008). Cardinality in Allegories. In: Berghammer, R., Möller, B., Struth, G. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2008. Lecture Notes in Computer Science, vol 4988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78913-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78913-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78912-3

  • Online ISBN: 978-3-540-78913-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics