Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimization Based Stabilization of Nonlinear Control Systems

  • Conference paper
Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

Abstract

We present a general framework for analysis and design of optimization based numerical feedback stabilization schemes utilizing ideas from relaxed dynamic programming. The application of the framework is illustrated for a set valued and graph theoretic offline optimization algorithm and for receding horizon online optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1,2. Athena Scientific, Belmont, MA (1995)

    MATH  Google Scholar 

  3. Camilli, F., Grüne, L., Wirth, F.: Control Lyapunov functions and Zubov’s method. In: SIAM J. Control Optim. (to appear, 2008)

    Google Scholar 

  4. Camilli, F., Grüne, L., Wirth, F.: A regularization of Zubov’s equation for robust domains of attraction. In: Treleaven, P.C., Nijman, A.J., de Bakker, J.W. (eds.) PARLE 1987. LNCS, vol. 258, pp. 277–290. Springer, Heidelberg (1987)

    Google Scholar 

  5. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50(5), 546–558 (2005)

    Article  MathSciNet  Google Scholar 

  6. Grüne, L.: Homogeneous state feedback stabilization of homogeneous systems. SIAM J. Control Optim. 38, 1288–1314 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grüne, L.: An adaptive grid scheme for the discrete Hamilton–Jacobi–Bellman equation. Numer. Math. 75(3), 319–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grüne, L., Junge, O.: A set oriented approach to optimal feedback stabilization. Syst. Control Lett. 54(2), 169–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grüne, L., Junge, O.: Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, Louisiana (2007)

    Google Scholar 

  10. Grüne, L., Junge, O.: Global optimal control of perturbed systems. J. Optim. Theory Appl. 136 (to appear, 2008)

    Google Scholar 

  11. Grüne, L., Nešić, D.: Optimization based stabilization of sampled–data nonlinear systems via their approximate discrete–time models. SIAM J. Control Optim. 42, 98–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grüne, L., Nešić, D., Pannek, J.: Model predictive control for nonlinear sampled–data systems. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, Springer, Heidelberg (1989)

    Google Scholar 

  13. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. In: Preprint, Universitat Bayreuth, IEEE Trans. Automat. Control (2006) (to appear, 2008) www.math.uni-bayreuth.de/~lgruene/publ/infhorrhc.html

  14. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Automat. Control 50(5), 674–678 (2005)

    Article  MathSciNet  Google Scholar 

  15. Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40(2), 293–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Junge, O., Osinga, H.M.: A set oriented approach to global optimal control. ESAIM Control Optim. Calc. Var. 10(2), 259–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kreisselmeier, G., Birkhölzer, T.: Numerical nonlinear regulator design. IEEE Trans. Autom. Control 39(1), 33–46 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lincoln, B., Rantzer, A.: Relaxing dynamic programming. IEEE Trans. Autom. Control 51, 1249–1260 (2006)

    Article  MathSciNet  Google Scholar 

  19. von Lossow, M.: A min-max version of Dijkstra’s algorithm with application to perturbed optimal control problems. In: Proceedings of the GAMM Annual meeting, Zürich, Switzerland (to appear, 2007)

    Google Scholar 

  20. Rantzer, A.: Relaxed dynamic programming in switching systems. IEE Proceedings — Control Theory and Applications 153, 567–574 (2006)

    Article  MathSciNet  Google Scholar 

  21. Tuna, E.S.: Optimal regulation of homogeneous systems. Automatica 41(11), 1879–1890 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grüne, L. (2008). Optimization Based Stabilization of Nonlinear Control Systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics