Abstract
Triangulation is one step in Computer Vision where the 3D points are calculated from 2D point correspondences over 2D images. When these 2D points are free of noise, the triangulation is the intersection point of two lines, but in the presence of noise this intersection does not occur and then the best solution must be estimated. We propose in this article a fast algorithm that uses Differential Evolution to calculate the optimal triangulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hartley, R., Sturm, P.: Triangulation. Computer Vision and Image Understanding 68(2), 146–157 (1997)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)
Vite Silva, I., Cruz Corés, N., de la Fraga, L.: Optimal triangulation in 3D computer vision using a multi-objective evolutionary algorithm. In: Giacobini, M., et al. (eds.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 330–339. Springer, Heidelberg (2007)
Jensen, M.T.: Guiding Single-Objective Optimization Using Multi-objective Methods. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoWorkshops 2003, LNCS, vol. 2611, pp. 199–210. Springer, Heidelberg (2003)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Price, K.V.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)
Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Landa-Becerra, R., de la Fraga, L.G. (2008). Triangulation Using Differential Evolution. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2008. Lecture Notes in Computer Science, vol 4974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78761-7_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-78761-7_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78760-0
Online ISBN: 978-3-540-78761-7
eBook Packages: Computer ScienceComputer Science (R0)