Abstract
The availability of low cost powerful parallel graphics cards has stimulated a trend to port GP on Graphics Processing Units (GPUs). Previous works on GPUs have shown evaluation phase speedups for large training cases sets. Using the CUDA language on the G80 GPU, we show it is possible to efficiently interpret several GP programs in parallel, thus obtaining speedups also for small training sets starting at less than 100 training cases. Our scheme was embedded in the well-known ECJ library, providing an easy entry point for owners of G80 GPUs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics processing unit. In: Proceedings of IEEE Congress on Evolutionary Computation 2005 (CEC 2005), 9 April, vol. 3, pp. 2286–2293. IEEE, Los Alamitos (2005)
Yu, Q., Chen, C., Pan, Z.: Parallel genetic algorithms on programmable graphics hardware. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 1051–1059. Springer, Heidelberg (2004)
Kaul, K., Bohn, C.-A.: A genetic texture packing algorithm on a graphical processing unit. In: Proceedings of the 9th International Conference on Computer Graphics and Artificial Intelligence (2006)
Wong, T.-T., Wong, M.L.: Parallel Evolutionary Computations. In: chapter 7, pp. 133–154. Springer, Heidelberg (2006)
Fok, K.-L., Wong, T.-T., Wong, M.-L.: Evolutionary computing on consumer graphics hardware. In: IEEE Intelligent Systems, pp. 69–78 (2007)
Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)
Harding, S., Banzhaf, W.: Fast genetic programming and artificial developmental systems on GPUs. In: proceedings of the 2007 High Performance Computing and Simulation (HPCS 2007) Conference, p. 2. IEEE Computer Society, Los Alamitos (2007)
Chitty, D.M.: A data parallel approach to genetic programming using programmable graphics hardware. In: Proceedings of the 2007 Genetic and Evolutionary Computing Conference (GECCO 2007), pp. 1566–1573. ACM Press, New York (2007)
Langdon, W.B.: A SIMD interpreter for genetic programming on GPU graphics cards. Technical Report CSM-470, Department of Computer Science, University of Essex, Colchester, UK, 3 (July 2007)
Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., Lanza, G.: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)
Sanders, P.: Emulating mimd behavior on simd machines. In: Proceedings of International Conference on Massively Parallel Processing Applications and Development, Elsevier, Amsterdam (1994)
Juille, H., Pollack, J.B.: Massively parallel genetic programming. In: Advances in Genetic Programming 2, vol. 17, pp. 339–358. MIT Press, Cambridge (1996)
Aho, A.V., Sethi, R., Ullman, J.D.: Compilers — Principles, Techniques and Tools. Addison-Wesley, Reading (1986)
Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Lang, K.J., Witbrock, M.J.: Learning to tell two spirals apart. In: Morgan-Kaufmann (ed.) Proceedings of the 1988 Connectionist Summer Schools (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Robilliard, D., Marion-Poty, V., Fonlupt, C. (2008). Population Parallel GP on the G80 GPU. In: O’Neill, M., et al. Genetic Programming. EuroGP 2008. Lecture Notes in Computer Science, vol 4971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78671-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-78671-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78670-2
Online ISBN: 978-3-540-78671-9
eBook Packages: Computer ScienceComputer Science (R0)