Nothing Special   »   [go: up one dir, main page]

Skip to main content

Population Parallel GP on the G80 GPU

  • Conference paper
Genetic Programming (EuroGP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4971))

Included in the following conference series:

Abstract

The availability of low cost powerful parallel graphics cards has stimulated a trend to port GP on Graphics Processing Units (GPUs). Previous works on GPUs have shown evaluation phase speedups for large training cases sets. Using the CUDA language on the G80 GPU, we show it is possible to efficiently interpret several GP programs in parallel, thus obtaining speedups also for small training sets starting at less than 100 training cases. Our scheme was embedded in the well-known ECJ library, providing an easy entry point for owners of G80 GPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics processing unit. In: Proceedings of IEEE Congress on Evolutionary Computation 2005 (CEC 2005), 9 April, vol. 3, pp. 2286–2293. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  2. Yu, Q., Chen, C., Pan, Z.: Parallel genetic algorithms on programmable graphics hardware. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 1051–1059. Springer, Heidelberg (2004)

    Google Scholar 

  3. Kaul, K., Bohn, C.-A.: A genetic texture packing algorithm on a graphical processing unit. In: Proceedings of the 9th International Conference on Computer Graphics and Artificial Intelligence (2006)

    Google Scholar 

  4. Wong, T.-T., Wong, M.L.: Parallel Evolutionary Computations. In: chapter 7, pp. 133–154. Springer, Heidelberg (2006)

    Google Scholar 

  5. Fok, K.-L., Wong, T.-T., Wong, M.-L.: Evolutionary computing on consumer graphics hardware. In: IEEE Intelligent Systems, pp. 69–78 (2007)

    Google Scholar 

  6. Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Harding, S., Banzhaf, W.: Fast genetic programming and artificial developmental systems on GPUs. In: proceedings of the 2007 High Performance Computing and Simulation (HPCS 2007) Conference, p. 2. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  8. Chitty, D.M.: A data parallel approach to genetic programming using programmable graphics hardware. In: Proceedings of the 2007 Genetic and Evolutionary Computing Conference (GECCO 2007), pp. 1566–1573. ACM Press, New York (2007)

    Chapter  Google Scholar 

  9. Langdon, W.B.: A SIMD interpreter for genetic programming on GPU graphics cards. Technical Report CSM-470, Department of Computer Science, University of Essex, Colchester, UK, 3 (July 2007)

    Google Scholar 

  10. Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., Lanza, G.: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  11. Sanders, P.: Emulating mimd behavior on simd machines. In: Proceedings of International Conference on Massively Parallel Processing Applications and Development, Elsevier, Amsterdam (1994)

    Google Scholar 

  12. Juille, H., Pollack, J.B.: Massively parallel genetic programming. In: Advances in Genetic Programming 2, vol. 17, pp. 339–358. MIT Press, Cambridge (1996)

    Google Scholar 

  13. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers — Principles, Techniques and Tools. Addison-Wesley, Reading (1986)

    Google Scholar 

  14. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    Google Scholar 

  15. Lang, K.J., Witbrock, M.J.: Learning to tell two spirals apart. In: Morgan-Kaufmann (ed.) Proceedings of the 1988 Connectionist Summer Schools (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael O’Neill Leonardo Vanneschi Steven Gustafson Anna Isabel Esparcia Alcázar Ivanoe De Falco Antonio Della Cioppa Ernesto Tarantino

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robilliard, D., Marion-Poty, V., Fonlupt, C. (2008). Population Parallel GP on the G80 GPU. In: O’Neill, M., et al. Genetic Programming. EuroGP 2008. Lecture Notes in Computer Science, vol 4971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78671-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78671-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78670-2

  • Online ISBN: 978-3-540-78671-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics