Abstract
Manual landmark positioning in volumetric image data is a complex task and often results in erroneous landmark positions. The landmark positioning tool presented uses image curvature features to precompute suitable candidates for landmark positions on surface data of anatomical structures. A force-feedback I/O device is then used to haptically guide the user during the definition of the correct landmarks in the 3D data volume. Furthermore, existing landmarks in a time-point of a sequence of 3D volumes (4D data set) can iteratively be transferred to other time-points using a surface based registration technique. First results show significant time savings and small interobserver variability (IROV) compared to the IROV of manually defined landmark positions using orthogonal slices of the image data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wörz S, Rohr K. Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models. Med Image Anal. 2006;10(1):41–58.
Berlinger K, Roth M, Sauer O, et al. Fully automatic detection of corresponding anatomical landmarks in volume scans of different respiratory state. Med Phys. 2006;33(6):1569–72.
Hartkens T, Rohr K, Stiehl HS. Evaluation of 3D operators for the detection of anatomical point landmarks in MR and CT images. Comput Vis Image Underst. 2002;86(2):118–36.
Ehrhardt J, Handels H, Plötz W, et al. Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters. Methods Inf Med. 2004;43(4):391–7.
Färber M, Drescher F, Ehrhardt J, et al. Integration von haptischen Ein-/Ausgabeger äten zur intuitiven Interaktion mit virtuellen Körpern in OP-Planungssysteme. Proc GMDS. 2006; p. 71–2.
Andresen PR, Nielsen M. Non-rigid registration by geometry-constrained diffusion. Med Image Anal. 2001;5(2):81–8.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Färber, M., Gawenda, B., Bohn, CA., Handels, H. (2008). Haptic Landmark Positioning and Automatic Landmark Transfer in 4D Lung CT Data. In: Tolxdorff, T., Braun, J., Deserno, T.M., Horsch, A., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2008. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78640-5_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-78640-5_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78639-9
Online ISBN: 978-3-540-78640-5
eBook Packages: Computer Science and Engineering (German Language)