Nothing Special   »   [go: up one dir, main page]

Skip to main content

Epistemic Constraints on Autonomous Symbolic Representation in Natural and Artificial Agents

  • Chapter
Applications of Computational Intelligence in Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 122))

Summary

We set out to address, in the form of a survey, the fundamental constraints upon self-updating representation in cognitive agents of natural and artificial origin. The foundational epistemic problem encountered by such agents is that of distinguishing errors of representation from inappropriateness of the representational framework. Resolving this conceptual difficulty involves ensuring the empirical falsifiability of both the representational hypotheses and the entities so represented, while at the same time retaining their epistemic distinguishability.

We shall thus argue that perception-action frameworks provide an appropriate basis for the development of an empirically meaningful criterion for validating perceptual categories. In this scenario, hypotheses about the agent’s world are defined in terms of environmental affordances (characterised in terms of the agent’s active capabilities). Agents with the capability to hierarchically-abstract this framework to a level consonant with performing syntactic manipulations and making deductive conjectures are consequently able to form an implicitly symbolic representation of the environment within which new, higher-level, modes of environment manipulation are implied (e.g. tool-use). This abstraction process is inherently open-ended, admitting a wide-range of possible representational hypotheses — only the form of the lowest-level of the hierarchy need be constrained a priori (being the minimally sufficient condition necessary for retention of the ability to falsify high-level hypotheses).

In biological agents capable of autonomous cognitive-updating, we argue that the grounding of such a priori ‘bootstrap’ representational hypotheses is ensured via the process of natural selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hume D (1999) An Enquiry concerning Human Understanding. Oxford University Press, Oxford/New York

    Google Scholar 

  2. Kant I (1999) Critique of Pure Reason. Cambridge University Press

    Google Scholar 

  3. Heidegger M (1996) Being and Time. Blackwell

    Google Scholar 

  4. Dreyfus H (1972) What Computers Can't Do. New York: Harper and Row

    Google Scholar 

  5. Suber P. Mind and baud rate. E-print of the Phil. Dept., Earlham College, Retr. 13/6/2005 http://www.earlham.edu/_peters/writing/baudrate.htm

  6. Winograd T (1980) What does it mean to understand language?, Cognitive Science 4(3):209–242. Reprinted in D. Norman (ed.), Perspectives on Cognitive Science, Ablex and Erlbaum Associates, 1981, 231-264

    Google Scholar 

  7. Gödel K (1931) Über formal unentscheidbare stäze der principia math. & verwandter systeme, I Monatshefte für Mathematik und Physik (38):173–198

    Article  Google Scholar 

  8. Breuer T (2000) In: M Carrier GM L Ruetsche (ed.) Science at Century's End: Philosophical Questions on the Progress and Limits of Science. Pittsburgh & Konstanz, University of Pittsburgh Press & Universitätsverlag Konstanz

    Google Scholar 

  9. Breuer T (1995) The impossibility of exact state self-measurements, Philosophy of Science 62:197–214

    Article  MathSciNet  Google Scholar 

  10. Winograd T, Flores F (1986) Understanding Computers and Cognition. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  11. McCarthy J, Hayes P (1969) Some philosophical problems from the standpoint of artificial intelligence, Machine Intelligence (4):463–502

    MATH  Google Scholar 

  12. Quine WVO (1960) Word and Object. NY: John Wiley and Sons, MIT

    MATH  Google Scholar 

  13. Wittgenstein L (2001) Philosophical investigations : the German text with a revised English translation by Ludwig Wittgenstein. Oxford : Blackwell

    Google Scholar 

  14. Millikan RG (1987) Language, Thought, and Other Biological Categories: New Foundations for Realism. The MIT Press; Reprint edition

    Google Scholar 

  15. Sipper M (1995) An introduction to artificial life., Explorations in Artificial Life (special issue of AI Expert) 4–8

    Google Scholar 

  16. Marr D (1982) Vision: A Computational Approach. Freeman & Co., San Fr.

    Google Scholar 

  17. Gärdenfors P (1994) How logic emerges from the dynamics of information, Logic and Information Flow 49–77

    Google Scholar 

  18. Granlund G (2003) Organization of Architectures for Cognitive Vision Systems, In: Proceedings of Workshop on Cognitive Vision. Schloss Dagstuhl, Germany

    Google Scholar 

  19. Magee D, Needham CJ, Santos P, Cohn AG, Hogg DC (2004) Autonomous learning for a cognitive agent using continuous models and inductive logic programming from audio-visual input, In: Proc. of the AAAI Workshop on Anchoring Symbols to Sensor Data

    Google Scholar 

  20. Brooks RA (1991) Intelligence without representation, Artificial Intelligence 47:139–159

    Article  Google Scholar 

  21. Newell A, Simon H (1976) The Theory of Human Problem Solving; reprinted in Collins & Smith (eds.), In: Readings in Cognitive Science, section 1.3.

    Google Scholar 

  22. Pinker S, Bloom P (1990) Natural language and natural selection, Behavioural and Brain Sciences 13(4):707–784

    Google Scholar 

  23. Marshall J, Blank D, Meeden L (2004) An emergent framework for selfmotivation in developmental robotics, In: Proc. of the Third International Conference on Development and Learning (ICDL '04). Salk Inst.

    Google Scholar 

  24. Franklin S, Garzon M (1991) Neural Computability, In: Omidvar O (ed.) Progress in Neural Networks, vol. 1. Ablex

    Google Scholar 

  25. Wolff JG (1987) Cognitive development as optimisation, In: Bolc L (ed.) Computational Models of Learning, 161–205. Springer-Verlag, Heidelberg

    Google Scholar 

  26. Dewey J (1896) The reex arc concept in psychology, The Psychological Review (3):356–370

    Google Scholar 

  27. Gibson JJ (1979) The ecological approach to visual perception. Houghton-Mifflin, Boston

    Google Scholar 

  28. McGrenere J, Ho W (2000) Affordances: Clarifying and Evolving a Concept, In: Proceedings of Graphics Interface 2000, 179{186. Montreal, Canada

    Google Scholar 

  29. Lakoff G, Johnson M (1999) Philosophy in the Flesh : The Embodied Mind and Its Challenge to Western Thought. Harper Collins Publishers

    Google Scholar 

  30. Glenberg A (1997) What memory is for, Behavioral and Brain Sciences 20(1):1–55

    Google Scholar 

  31. Berlucchi F, Aglioti S (1997) The body in the brain: neural bases of corporeal awareness, Trends in Neuroscience 20(5):60–564

    Google Scholar 

  32. Piaget J (1970) Genetic Epistemology. Columbia University Press, New York

    Google Scholar 

  33. Rohrer T (2001) Pragmatism, Ideology and Embodiment: William James and the Philosophical Foundations of Cognitive Linguistics, In: Sandriklogou, Dirven (eds.) Language and Ideology: Cognitive Theoretical Approaches, 49-82. Amsterdam: John Benjamins

    Google Scholar 

  34. Perry J (1997) Myself and I, In: Stamm M (ed.) Philosophie in Sythetisher Absicht, 83–103. Stuttgart:Klett-Cotta

    Google Scholar 

  35. Bermudez JL (2001) Non-conceptual self-consciousness and cognitive science, Synthese (129):129–149

    Article  Google Scholar 

  36. Metzinger T (2003) Phenomenal transparency and cognitive self-reference, Phenomenology and the Cognitive Sciences (2):353–393

    Article  Google Scholar 

  37. Viezzer M (2001) Dynamic Ontologies or How to Build Agents That Can Change Their Mind. Ph.D. Thesis, University of Birmingham, UK

    Google Scholar 

  38. Pinker S (1995) The Language Instinct: The New Science of Language and Mind. Penguin Books Ltd. ISBN: 0140175296

    Google Scholar 

  39. Harnad S (1990) The symbol grounding problem, Physica D (42):335–346

    Article  Google Scholar 

  40. Steels L (1997) The origins of syntax in visually grounded robotic agents, In: Pollack M (ed.) Proceedings of the 10th IJCAI, Nagoya, 1632{1641. AAAI Press, Menlo-Park Ca.

    Google Scholar 

  41. Harrison JE, Baron-Cohen S (1996) Synaesthesia: Classic and Contemporary Readings. Blackwell Publishers

    Google Scholar 

  42. Saunders J, Knill DC (2004) Visual feedback control of hand movements, J of Neuroscience 24(13):3223–3234

    Article  Google Scholar 

  43. Schlicht EJ, Schrater PR (2003) Bayesian model for reaching and grasping peripheral and occluded targets, Journal of Vision 3(9):261

    Google Scholar 

  44. Brooks RA (1986) A robust layered control system for a mobile robot, IEEE Journal of Robotics and Automation 14(23)

    Google Scholar 

  45. Modayil J. Bootstrap learning a perceptually grounded object ontology. Retr. 9/5/2005 http://www.cs.utexas.edu/users/modayil/modayil-proposal.pdf

  46. Nehaniv CL, Polani D, Dautenhahn K, te Boekhorst R, Canamero L (2002) In: Standish B Abbass (ed.) Artificial Life VIII, 345–349. MIT Press

    Google Scholar 

  47. Sun R (2004) Desiderata for cog. architectures, Philosophical Psychology 17(3)

    Google Scholar 

  48. Stein LA (1991) Imagination and situated cognition. Tech. Rep. A.I. Memo No. 27, MIT AI Laboratory

    Google Scholar 

  49. Windridge D, Kittler J (2007) Open-Ended Inference of Relational Representations in the COSPAL Perception-Action Architecture, In: Proc. of International Conf. on Machine Vision Applications (ICVS 2007). Germany

    Google Scholar 

  50. Quine WVO (1977) Ontological Relativity. Columbia

    Google Scholar 

  51. Popper K (1959) The Logic of Scientific Discovery. (translation of Logik der Forschung). Hutchinson, London

    Google Scholar 

  52. Dawkins R (1989) The Sel_sh Gene (2nd ed.). OUP

    Google Scholar 

  53. Hobson J (1988) The Dreaming Brain. Basic Books, New York

    Google Scholar 

  54. Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind-reading, Trends in Cognitive Sciences 2(2)

    Google Scholar 

  55. Windridge D (2005) Cognitive bootstrapping: A survey of bootstrap mechanisms for emergent cognition. Tech. Rep. VSSP-TR-2/2005, CVSSP, The University of Surrey, Guildford, Surrey, GU2 7XH, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Windridge, D., Kittler, J. (2008). Epistemic Constraints on Autonomous Symbolic Representation in Natural and Artificial Agents. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Applications of Computational Intelligence in Biology. Studies in Computational Intelligence, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78534-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78534-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78533-0

  • Online ISBN: 978-3-540-78534-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics