Abstract
Number and date expressions are essential information items in corpora and therefore play a major role in various text mining applications. However, so far number expressions were investigated in a rather superficial manner. In this paper we introduce a comprehensive number classification and present promising, initial results of a classification experiment using various Machine Learning algorithms (amongst others AdaBoost and Maximum Entropy) to extract and classify number expressions in a German newspaper corpus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
AHN, D., FISSAHA ADAFRE, S. and DE RIJKE, M. (2005): Recognizing and Interpreting Temporal Expressions in Open Domain Texts. S. Artemov et al. (eds): We Will Show Them: Essays in Honour of Dov Gabbay, Vol 1., College Publications.
APPELT, D., BEAR, J., HOBBS, J., ISRAEL, D., KAMEYAMA, M., STICKEL, M. and TYSON, M. (1993): FASTUS: A Cascaded Finite-State Tranducer for Extracting Infor-mation from Natural-Language Text. SRI International.
BIKEL, D., MILLER, S., SCHWARTZ, R. and WEISCHEDEL, R. (1997): Nymble: a high-performance learning name-finder. Proceedings of 5th ANLP.
CARRERAS, X., MÀRQUEZ, L. and PADRÓ, L. (2003): A Simple Named Entity Extractor using AdaBoost. Proceedings of CoNLL-2003
CHINCHOR, N. A. (1998a): Overview of MUC-7/MET-2. Proceedings of the Message Un-derstanding Conference 7.
CHINCHOR, N. A. (1998b): MUC-7 Named Entity Task Definition (version 3.5) Proceedings of the Message Understanding Conference 7.
HOVY, E. H., HERMJAKOB, U. and RAVICHANDRAN, D. (2002): A Question/Answer Ty-pology with Surface Text Patterns. Proceedings of the DARPA Human Language Tech-nology conference (HLT).
HUMPHREYS, K., GAIZAUSKAS, R., AZZAM, S., HUYCK, C., MITCHELL, B. CUN-NINGHAM, H. and WILKS, Y. (1998): University of Sheffield: Description of the LaSIE-II System as Used for MUC-7. Proceedings of the 7th Message Understanding Conference (MUC-7).
TJONG KIM SANG, E. F. and DE MEULDER, F. (2003): Introduction to the CoNLL Shared Task: Language-Independent Named Entity Recognition. Proceedings of the Conference on Computational Natural Language Learning.
VOORHEES, E. and TICE, D. (2000): Building a Question Answering Test Collection. Pro-ceedings of SIGIR-2000.
WITTEN, I. H. and FRANK, E. (2005): Data Mining: Practical machine learning tools and techniques. 2nd Edition, Morgan Kaufmann, San Francisco.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cramer, I., Schacht, S., Merkel, A. (2008). Classifying Number Expressions in German Corpora. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78246-9_65
Download citation
DOI: https://doi.org/10.1007/978-3-540-78246-9_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78239-1
Online ISBN: 978-3-540-78246-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)