Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract Interpretation of the Physical Inputs of Embedded Programs

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4905))

Abstract

We define an abstraction of the continuous variables that serve as inputs to embedded software. In existing static analyzers, these variables are most often abstracted by a constant interval, and this approach has shown its limits. We propose a different method that analyzes in a more precise way the continuous environment. This environment is first expressed as the semantics of a special continuous program, and we define a safe abstract semantics. We introduce the abstract domain of interval valued step functions and show that it safely over-approximates the set of continuous functions. The theory of guaranteed integration is then used to effectively compute an abstract semantics and we prove that this abstract semantics is safe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertrane, J.: Static Analysis by Abstract Interpretation of the Quasi-synchronous Composition of Synchronous Programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 97–112. Springer, Heidelberg (2005)

    Google Scholar 

  3. Bieberbach, L.: On the remainder of the runge-kutta formula. Z.A.M.P. 2, 233–248 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cousot, P., et al.: Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded Software. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)

    Google Scholar 

  5. Bouissou, O.: Analyse statique par interpretation abstraite de système hybrides discrets-continus. Technical Report 05-301, CEA-LIST (2005)

    Google Scholar 

  6. Bouissou, O., Martel, M.: GRKLib: A guaranteed runge-kutta library. In: International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, IEEE, Los Alamitos (2006)

    Google Scholar 

  7. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. Journal of Functional Programming 2(4), 407–423 (1992)

    Article  MathSciNet  Google Scholar 

  8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM Press, New York (1977)

    Google Scholar 

  9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, pp. 84–97. ACM Press, New York (1978)

    Google Scholar 

  10. Daumas, M., Lester, D.: Stochastic formal methods: An application to accuracy of numeric software. In: Proceedings of the 40th IEEE Annual Hawaii International Conference on System Sciences (2007)

    Google Scholar 

  11. Lieutier, A., Edalat, A., Pattinson, D.: A Computational Model for Multi-variable Differential Calculus. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 505–519. Springer, Heidelberg (2005)

    Google Scholar 

  12. Edalat, A., Pattinson, D.: A Domain Theoretic Account of Picard’s Theorem. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 494–505. Springer, Heidelberg (2004)

    Google Scholar 

  13. Martel, M., Goubault, É., Putot, S.: Asserting the Precision of Floating-Point Computations: A Simple Abstract Interpreter. In: Le Métayer, D. (ed.) ESOP 2002 and ETAPS 2002. LNCS, vol. 2305, pp. 209–212. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Goubault, E., Martel, M., Putot, S.: Some future challenges in the validation of control systems. In: ERTS (2006)

    Google Scholar 

  15. Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I: nonstiff problems, 2nd revised edn. Springer, Heidelberg (1993)

    Google Scholar 

  16. Halbwachs, N., Proy, Y., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994)

    Google Scholar 

  17. Henzinger, T.A.: The theory of hybrid automata. In: Symposium on Logic in Computer Science, pp. 278–292. IEEE Press, Los Alamitos (1996)

    Google Scholar 

  18. Henzinger, T.A., et al.: Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Carr III, J.W.: Error bounds for the runge-kutta single-step integration process. JACM 5(1), 39–44 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangsund Randwertaufgaben und Anwendungen. PhD thesis, Universität Karlsruhe (1988)

    Google Scholar 

  21. Martel, M.: An overview of semantics for the validation of numerical programs. In VMCAI. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 59–77. Springer, Heidelberg (2005)

    Google Scholar 

  22. Martel, M.: Towards an abstraction of the physical environment of embedded systems. In: NSAD (2005)

    Google Scholar 

  23. Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 165–177. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Nedialkov, N.S., Jackson, K.R.: An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. In: Developments in Reliable Computing, pp. 289–310. Kluwer, Dordrecht (1999)

    Google Scholar 

  25. IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. IEEE, New York, August 12 (1985).

    Google Scholar 

  26. Rauh, A., Auer, E., Hofer, E.: ValEncIA-IVP: A case study of validated solvers for initial value problems. In: SCAN (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Logozzo Doron A. Peled Lenore D. Zuck

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouissou, O., Martel, M. (2008). Abstract Interpretation of the Physical Inputs of Embedded Programs. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2008. Lecture Notes in Computer Science, vol 4905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78163-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78163-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78162-2

  • Online ISBN: 978-3-540-78163-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics