Abstract
We define an abstraction of the continuous variables that serve as inputs to embedded software. In existing static analyzers, these variables are most often abstracted by a constant interval, and this approach has shown its limits. We propose a different method that analyzes in a more precise way the continuous environment. This environment is first expressed as the semantics of a special continuous program, and we define a safe abstract semantics. We introduce the abstract domain of interval valued step functions and show that it safely over-approximates the set of continuous functions. The theory of guaranteed integration is then used to effectively compute an abstract semantics and we prove that this abstract semantics is safe.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)
Bertrane, J.: Static Analysis by Abstract Interpretation of the Quasi-synchronous Composition of Synchronous Programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 97–112. Springer, Heidelberg (2005)
Bieberbach, L.: On the remainder of the runge-kutta formula. Z.A.M.P. 2, 233–248 (1951)
Cousot, P., et al.: Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded Software. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)
Bouissou, O.: Analyse statique par interpretation abstraite de système hybrides discrets-continus. Technical Report 05-301, CEA-LIST (2005)
Bouissou, O., Martel, M.: GRKLib: A guaranteed runge-kutta library. In: International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, IEEE, Los Alamitos (2006)
Bourdoncle, F.: Abstract interpretation by dynamic partitioning. Journal of Functional Programming 2(4), 407–423 (1992)
Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM Press, New York (1977)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, pp. 84–97. ACM Press, New York (1978)
Daumas, M., Lester, D.: Stochastic formal methods: An application to accuracy of numeric software. In: Proceedings of the 40th IEEE Annual Hawaii International Conference on System Sciences (2007)
Lieutier, A., Edalat, A., Pattinson, D.: A Computational Model for Multi-variable Differential Calculus. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 505–519. Springer, Heidelberg (2005)
Edalat, A., Pattinson, D.: A Domain Theoretic Account of Picard’s Theorem. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 494–505. Springer, Heidelberg (2004)
Martel, M., Goubault, É., Putot, S.: Asserting the Precision of Floating-Point Computations: A Simple Abstract Interpreter. In: Le Métayer, D. (ed.) ESOP 2002 and ETAPS 2002. LNCS, vol. 2305, pp. 209–212. Springer, Heidelberg (2002)
Goubault, E., Martel, M., Putot, S.: Some future challenges in the validation of control systems. In: ERTS (2006)
Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I: nonstiff problems, 2nd revised edn. Springer, Heidelberg (1993)
Halbwachs, N., Proy, Y., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994)
Henzinger, T.A.: The theory of hybrid automata. In: Symposium on Logic in Computer Science, pp. 278–292. IEEE Press, Los Alamitos (1996)
Henzinger, T.A., et al.: Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)
Carr III, J.W.: Error bounds for the runge-kutta single-step integration process. JACM 5(1), 39–44 (1958)
Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangsund Randwertaufgaben und Anwendungen. PhD thesis, Universität Karlsruhe (1988)
Martel, M.: An overview of semantics for the validation of numerical programs. In VMCAI. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 59–77. Springer, Heidelberg (2005)
Martel, M.: Towards an abstraction of the physical environment of embedded systems. In: NSAD (2005)
Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 165–177. Springer, Heidelberg (1999)
Nedialkov, N.S., Jackson, K.R.: An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. In: Developments in Reliable Computing, pp. 289–310. Kluwer, Dordrecht (1999)
IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. IEEE, New York, August 12 (1985).
Rauh, A., Auer, E., Hofer, E.: ValEncIA-IVP: A case study of validated solvers for initial value problems. In: SCAN (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bouissou, O., Martel, M. (2008). Abstract Interpretation of the Physical Inputs of Embedded Programs. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2008. Lecture Notes in Computer Science, vol 4905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78163-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-78163-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78162-2
Online ISBN: 978-3-540-78163-9
eBook Packages: Computer ScienceComputer Science (R0)