Abstract
This paper is concerned with the task of preposition generation in the context of a grammar checker. Relevant features for this task can range from lexical features, such as words and their part-of-speech tags in the vicinity of the preposition, to syntactic features that take into account the attachment site of the prepositional phrase (PP), as well as its argument/adjunct distinction. We compare the performance of these different kinds of features in a memory-based learning framework. Experiments show that using PP attachment information can improve preposition generation accuracy on Wall Street Journal texts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bitchener, J., Young, S., Cameron, D.: The effect of different types of corrective feedback on esl student writing. Journal of Second Language Writing 14, 191–205 (2005)
Chodorow, M., Tetreault, J., Han, N.R.: Detection of grammatical errors involving prepositions. In: Proc. ACL-SIGSEM Workshop on Prepositions, Prague, Czech Republic (2007)
Eeg-Olofsson, J., Knutsson, O.: Automatic grammar checking for second language learners — the use of prepositions. In: Proc. NoDaLiDa, Reykjavík, Iceland (2003)
De Felice, R., Pulman, S.G.: Automatically acquiring models of preposition use. In: Proc. ACL-SIGSEM Workshop on Prepositions, Prague, Czech Republic (2007)
Quirk, R., et al.: A comprehensive grammar of the english language. Longman (1985)
Merlo, P., Esteve Ferrer, E.: The notion of argument in prepositional phrase attachment. Computational Linguistics 32, 341–378 (2006)
Ratnaparkhi, A., Reynar, J., Roukos, S.: A maximum entropy model for prepositional phrase attachment. In: Proc. ARPA Workshop on Human Language Technology, Plainsboro, NJ (1994)
Daelemans, W., van den Bosch, A., Zavrel, J.: Forgetting exceptions is harmful in language learning. Machine Learning 34, 11–41 (1999)
Daelemans, W., van den Bosch, A., Weijters, A.: Igtree: Using trees for compression and classification in lazy learning algorithms. Artificial Intelligence Review 11, 407–423 (1997)
Marcus, M., et al.: The penn treebank: Annotating predicate argument structure. In: Proc. ARPA Workshop on Human Language Technology, Plainsboro, NJ (1994)
Collins, M.: Head-driven statistical models for natural language parsing. Computational Linguistics 29, 589–637 (2003)
Bies, A., et al.: Bracketing guidelines for treebank ii style. Technical Report, University of Pennsylvania, Philadelphia, PA (1995)
Collins, M., Brooks, J.: Prepositional phrase attachment through a backed-off model. In: Proc. 3rd Workshop on Very Large Corpora, Cambridge, MA (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, J., Knutsson, O. (2008). The Role of PP Attachment in Preposition Generation. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2008. Lecture Notes in Computer Science, vol 4919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78135-6_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-78135-6_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78134-9
Online ISBN: 978-3-540-78135-6
eBook Packages: Computer ScienceComputer Science (R0)