Nothing Special   »   [go: up one dir, main page]

Skip to main content

Terms Derived from Frequent Sequences for Extractive Text Summarization

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2008)

Abstract

Automatic text summarization helps the user to quickly understand large volumes of information. We present a language- and domain-independent statistical-based method for single-document extractive summarization, i.e., to produce a text summary by extracting some sentences from the given text. We show experimentally that words that are parts of bigrams that repeat more than once in the text are good terms to describe the text’s contents, and so are also so-called maximal frequent sentences. We also show that the frequency of the term as term weight gives good results (while we only count the occurrences of a term in repeating bigrams).

 Work done under partial support of Mexican Government (CONACyT, SNI, SIP-IPN, COTEPABE-IPN, COFAA-IPN). The authors thank Rada Mihalcea for useful discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lin, C.Y., Hovy, E.: Automated Text Summarization in SUMMARIST. In: Proc. of ACL Workshop on Intelligent, Scalable Text Summarization, Madrid, Spain (1997)

    Google Scholar 

  2. Kupiec, J., Pedersen, J.O., Chen, F.: A Trainable Document Summarizer. In: Proceedings of the 18th ACM-SIGIR Conference on Research and Development in Information Retrieval, Seattle, pp. 68–73 (1995)

    Google Scholar 

  3. Song, Y., et al.: A Term Weighting Method based on Lexical Chain for Automatic Summarization. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)

    Google Scholar 

  4. Cristea, D., et al.: Summarization through Discourse Structure. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)

    Google Scholar 

  5. Liu, D., et al.: Multi-Document Summarization Based on BE-Vector Clustering. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Xu, W., Li, W., et al.: Deriving Event Relevance from the Ontology Constructed with Formal Concept Analysis. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Villatoro-Tello, E., Villaseñor-Pineda, L., Montes-y-Gómez, M.: Using Word Sequences for Text Summarization. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 293–300. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Chuang, T.W., Yang, J.: Text Summarization by Sentence Segment Extraction Using Machine Learning Algorithms. In: Proc. of the ACL 2004 Workshop, Barcelona, España (2004)

    Google Scholar 

  9. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information processing & Management 24, 513–523 (1988)

    Article  Google Scholar 

  10. García-Hernández, R.A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A Fast Algorithm to Find All the Maximal Frequent Sequences in a Text. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 478–486. Springer, Heidelberg (2004)

    Google Scholar 

  11. García-Hernández, R.A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A New Algorithm for Fast Discovery of Maximal Sequential Patterns in a Document Collection. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 514–523. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. DUC. Document understanding conference 2002 (2002), www-nlpir.nist.gov/projects/duc

  13. Lin, C.Y.: ROUGE: A Package for Automatic Evaluation of Summaries. In: Proceedings of Workshop on Text Summarization of ACL, Spain (2004)

    Google Scholar 

  14. Lin, C.Y., Hovy, E.: Automatic Evaluation of Summaries Using N-gram Co-Occurrence Statistics. In: Proceedings of HLT-NAACL, Canada (2003)

    Google Scholar 

  15. Mihalcea, R.: Random Walks on Text Structures. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 249–262. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2004), Barcelona, Spain (2004)

    Google Scholar 

  17. Hassan, S., Mihalcea, R., Banea, C.: Random-Walk Term Weighting for Improved Text Classification. In: Proceedings of the IEEE International Conference on Semantic Computing (ICSC 2007), Irvine, CA (2007)

    Google Scholar 

  18. HaCohen-Kerner, Y., Zuriel, G., Asaf, M.: Automatic Extraction and Learning of Keyphrases from Scientific Articles. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 645–657. Springer, Heidelberg (2006)

    Google Scholar 

  19. Bolshakov, I.A.: Getting One’s First Million...Collocations. In: Gelbukh, A. (ed.) CICLing 2004. LNCS, vol. 2945, pp. 229–242. Springer, Heidelberg (2004)

    Google Scholar 

  20. Koster, C.H.A.: Transducing Text to Multiword Units. In: Workshop on Multiword Units MEMURA at the fourth International Conference on Language Resources and Evaluation, LREC-2004, Lisbon, Portugal (2004)

    Google Scholar 

  21. Baeza Yates, R., Ribeiro Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ledeneva, Y., Gelbukh, A., García-Hernández, R.A. (2008). Terms Derived from Frequent Sequences for Extractive Text Summarization. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2008. Lecture Notes in Computer Science, vol 4919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78135-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78135-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78134-9

  • Online ISBN: 978-3-540-78135-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics