Abstract
Automatic text summarization helps the user to quickly understand large volumes of information. We present a language- and domain-independent statistical-based method for single-document extractive summarization, i.e., to produce a text summary by extracting some sentences from the given text. We show experimentally that words that are parts of bigrams that repeat more than once in the text are good terms to describe the text’s contents, and so are also so-called maximal frequent sentences. We also show that the frequency of the term as term weight gives good results (while we only count the occurrences of a term in repeating bigrams).
Work done under partial support of Mexican Government (CONACyT, SNI, SIP-IPN, COTEPABE-IPN, COFAA-IPN). The authors thank Rada Mihalcea for useful discussion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lin, C.Y., Hovy, E.: Automated Text Summarization in SUMMARIST. In: Proc. of ACL Workshop on Intelligent, Scalable Text Summarization, Madrid, Spain (1997)
Kupiec, J., Pedersen, J.O., Chen, F.: A Trainable Document Summarizer. In: Proceedings of the 18th ACM-SIGIR Conference on Research and Development in Information Retrieval, Seattle, pp. 68–73 (1995)
Song, Y., et al.: A Term Weighting Method based on Lexical Chain for Automatic Summarization. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)
Cristea, D., et al.: Summarization through Discourse Structure. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)
Liu, D., et al.: Multi-Document Summarization Based on BE-Vector Clustering. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)
Xu, W., Li, W., et al.: Deriving Event Relevance from the Ontology Constructed with Formal Concept Analysis. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, Springer, Heidelberg (2006)
Villatoro-Tello, E., Villaseñor-Pineda, L., Montes-y-Gómez, M.: Using Word Sequences for Text Summarization. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 293–300. Springer, Heidelberg (2006)
Chuang, T.W., Yang, J.: Text Summarization by Sentence Segment Extraction Using Machine Learning Algorithms. In: Proc. of the ACL 2004 Workshop, Barcelona, España (2004)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information processing & Management 24, 513–523 (1988)
García-Hernández, R.A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A Fast Algorithm to Find All the Maximal Frequent Sequences in a Text. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 478–486. Springer, Heidelberg (2004)
García-Hernández, R.A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A New Algorithm for Fast Discovery of Maximal Sequential Patterns in a Document Collection. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 514–523. Springer, Heidelberg (2006)
DUC. Document understanding conference 2002 (2002), www-nlpir.nist.gov/projects/duc
Lin, C.Y.: ROUGE: A Package for Automatic Evaluation of Summaries. In: Proceedings of Workshop on Text Summarization of ACL, Spain (2004)
Lin, C.Y., Hovy, E.: Automatic Evaluation of Summaries Using N-gram Co-Occurrence Statistics. In: Proceedings of HLT-NAACL, Canada (2003)
Mihalcea, R.: Random Walks on Text Structures. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 249–262. Springer, Heidelberg (2006)
Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2004), Barcelona, Spain (2004)
Hassan, S., Mihalcea, R., Banea, C.: Random-Walk Term Weighting for Improved Text Classification. In: Proceedings of the IEEE International Conference on Semantic Computing (ICSC 2007), Irvine, CA (2007)
HaCohen-Kerner, Y., Zuriel, G., Asaf, M.: Automatic Extraction and Learning of Keyphrases from Scientific Articles. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 645–657. Springer, Heidelberg (2006)
Bolshakov, I.A.: Getting One’s First Million...Collocations. In: Gelbukh, A. (ed.) CICLing 2004. LNCS, vol. 2945, pp. 229–242. Springer, Heidelberg (2004)
Koster, C.H.A.: Transducing Text to Multiword Units. In: Workshop on Multiword Units MEMURA at the fourth International Conference on Language Resources and Evaluation, LREC-2004, Lisbon, Portugal (2004)
Baeza Yates, R., Ribeiro Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ledeneva, Y., Gelbukh, A., García-Hernández, R.A. (2008). Terms Derived from Frequent Sequences for Extractive Text Summarization. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2008. Lecture Notes in Computer Science, vol 4919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78135-6_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-78135-6_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78134-9
Online ISBN: 978-3-540-78135-6
eBook Packages: Computer ScienceComputer Science (R0)