Nothing Special   »   [go: up one dir, main page]

Skip to main content

Natural Language as the Basis for Meaning Representation and Inference

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4919))

Abstract

Semantic inference is an important component in many natural language understanding applications. Classical approaches to semantic inference rely on logical representations for meaning, which may be viewed as being “external” to the natural language itself. However, practical applications usually adopt shallower lexical or lexical-syntactic representations, which correspond closely to language structure. In many cases, such approaches lack a principled meaning representation and inference framework. We describe a generic semantic inference framework that operates directly on language-based structures, particularly syntactic trees. New trees are inferred by applying entailment rules, which provide a unified representation for varying types of inferences. Rules were generated by manual and automatic methods, covering generic linguistic structures as well as specific lexical-based inferences. Initial empirical evaluation in a Relation Extraction setting supports the validity and potential of our approach. Additionally, such inference is shown to improve the critical step of unsupervised learning of entailment rules, which in turn enhances the scope of the inference system.

This paper corresponds to the invited talk of the first author at CICLING 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dagan, I., Glickman, O., Magnini, B.: The pascal recognising textual entailment challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)

    Google Scholar 

  2. Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., Szpektor, I.: The second pascal recognising textual entailment challenge. In: Second PASCAL Challenge Workshop for Recognizing Textual Entailment (2006)

    Google Scholar 

  3. Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B.: The third pascal recognizing textual entailment challenge. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing (2007)

    Google Scholar 

  4. Raina, R., Ng, A.Y., Manning, C.D.: Robust textual inference via learning and abductive reasoning. In: Proceedings of AAAI (2005)

    Google Scholar 

  5. Tatu, M., Moldovan, D.: A logic-based semantic approach to recognizing textual entailment. In: Proceedings of COLING-ACL (2006)

    Google Scholar 

  6. Bos, J., Markert, K.: When logical inference helps determining textual entailment (and when it doesn’t). In: Proceedings of the Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)

    Google Scholar 

  7. Bar-Haim, R., Dagan, I., Greental, I., Shnarch, E.: Semantic inference at the lexical-syntactic level. In: Proceedings of AAAI (2007)

    Google Scholar 

  8. Bar-Haim, R., Dagan, I., Greental, I., Szpektor, I., Friedman, M.: Semantic inference at the lexical-syntactic level for textual entailment recognition. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing (2007)

    Google Scholar 

  9. Valencia, V.S.: Parsing-driven inference: natural logic. Linguistic Analysis 25, 258–285 (1995)

    Google Scholar 

  10. MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Prague, pp. 193–200, Association for Computational Linguistics (2007)

    Google Scholar 

  11. Szpektor, I., Dagan, I.: Learning canonical forms of entailment rules. In: Proceedings of RANLP (2007)

    Google Scholar 

  12. Lin, D.: Dependency-based evaluation of minipar. In: Proceedings of the Workshop on Evaluation of Parsing Systems at LREC (1998)

    Google Scholar 

  13. Nairn, R., Condoravdi, C., Karttunen., L.: Computing relative polarity for textual inference. In: Proceedings of ICoS-5 (2006)

    Google Scholar 

  14. Ron, T.: Generating entailment rules using online lexical resources. Masterś thesis, Computer Science Department, BarIlan University (2006)

    Google Scholar 

  15. Macleod, C., Grishman, R., Meyers, A., Barrett, L., Reeves, R.: Nomlex: A lexicon of nominalizations. In: EURALEX (1998)

    Google Scholar 

  16. Lin, D., Pantel, P.: Discovery of inference rules for question answering. Natural Language Engineering 7(4), 343–360 (2001)

    Article  Google Scholar 

  17. Szpektor, I., Tanev, H., Dagan, I., Coppola, B.: Scaling web-based acquisition of entailment relations. In: Proceedings of EMNLP (2004)

    Google Scholar 

  18. Ravichandran, D., Hovy, E.: Learning surface text patterns for a question answering system. In: Proceedings of ACL (2002)

    Google Scholar 

  19. Shinyama, Y., Sekine, S., Kiyoshi, S., Grishman, R.: Automatic paraphrase acquisition from news articles. In: Proceedings of HLT (2002)

    Google Scholar 

  20. Barzilay, R., Lee, L.: Learning to paraphrase: An unsupervised approach using multiple-sequence alignment. In: Proceedings of HLT-NAACL (2003)

    Google Scholar 

  21. Quirk, C., Brockett, C., Dolan, W.: Monolingual machine translation for paraphrase generation. In: Proceedings of EMNLP (2004)

    Google Scholar 

  22. Sekine, S.: Automatic paraphrase discovery based on context and keywords between ne pairs. In: Proceedings of IWP (2005)

    Google Scholar 

  23. Romano, L., Kouylekov, M., Szpektor, I., Dagan, I., Lavelli, A.: Investigating a generic paraphrase-based approach for relation extraction. In: Proceedings of EACL (2006)

    Google Scholar 

  24. Sekine, S.: On-demand information extraction. In: Proceedings of the COLING/ACL Main Conference Poster Sessions (2006)

    Google Scholar 

  25. Harabagiu, S., Hickl, A.: Methods for using textual entailment in open-domain question answering. In: Proceedings of ACL (2006)

    Google Scholar 

  26. Szpektor, I., Shnarch, E., Dagan, I.: Instance-based evaluation of entailment rule acquisition. In: Proceedings of ACL (2007)

    Google Scholar 

  27. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46 (1960)

    Article  Google Scholar 

  28. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. Language, Speech and Communication. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dagan, I., Bar-Haim, R., Szpektor, I., Greental, I., Shnarch, E. (2008). Natural Language as the Basis for Meaning Representation and Inference. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2008. Lecture Notes in Computer Science, vol 4919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78135-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78135-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78134-9

  • Online ISBN: 978-3-540-78135-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics