Nothing Special   »   [go: up one dir, main page]

Skip to main content

Finite Dimensional Vector Spaces Are Complete for Traced Symmetric Monoidal Categories

  • Chapter
Pillars of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4800))

Abstract

We show that the category FinVect k of finite dimensional vector spaces and linear maps over any field k is (collectively) complete for the traced symmetric monoidal category freely generated from a signature, provided that the field has characteristic 0; this means that for any two different arrows in the free traced category there always exists a strong traced functor into FinVect k which distinguishes them. Therefore two arrows in the free traced category are the same if and only if they agree for all interpretations in FinVect k .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloom, S., Ésik, Z.: Iteration Theories, EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)

    Google Scholar 

  2. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997)

    Google Scholar 

  3. Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and letrec. Distinguished Dissertation Series. Springer, Heidelberg (1999), also available as Ph.D. thesis ECS-LFCS-97-360, University of Edinburgh (1997)

    Google Scholar 

  4. Hyland, M., Power, A.J.: Symmetric monoidal sketches and categories of wirings. Electr. Notes Theor. Comput. Sci, vol. 100, pp. 31–46 (2004)

    Google Scholar 

  5. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cambridge Phil. Soc. 119(3), 447–468 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  8. Pardo, D., Rabinovich, A.M., Trakhtenbrot, B.A.: Synchronous circuits over continuous time: feedback, reliability and completeness. Fundam. Inform. 62(1), 123–137 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Rabinovich, A.M., Trakhtenbrot, B.A.: Nets and data flow interpreters. In: Proc. Fourth Symp. on Logic in Computer Science, pp. 164–174. IEEE Computer Society Press, Washington (1989)

    Chapter  Google Scholar 

  10. Simpson, A.K.: Categorical completeness results for the simply-typed lambda-calculus. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 414–427. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  11. Simpson, A.K., Plotkin, G.: Complete axioms for categorical fixed-point operators. In: Proc. Fifteenth Symp. on Logic in Computer Science, pp. 30–41. IEEE Computer Society Press, Washington (2000)

    Chapter  Google Scholar 

  12. Soloviev, S.V.: Proof of a conjecture of S. Mac Lane. Ann. Pure Appl. Logic 90, 101–162 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Statman, R.: Completeness, invariance, and definability. J. Symbolic Logic 47, 17–26 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ştefǎnescu, G.: Network Algebra. Series in Discrete Mathematics and Theoretical Computer Science. Springer, Heidelberg (2000)

    Google Scholar 

  15. Trakhtenbrot, B.A.: On operators, realizable in logical nets. Doklady AN SSSR (Proceedings of the USSR Academy of Sciences) 112(6), 1005–1007 (1957)

    Google Scholar 

  16. Trakhtenbrot, B.A.: On the power of compositional proofs for nets: relationships between completeness and modularity. Fundam. Inform. 30(1), 83–95 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Yetter, D.N.: Functorial Knot Theory. World Scientific, Singapore (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnon Avron Nachum Dershowitz Alexander Rabinovich

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hasegawa, M., Hofmann, M., Plotkin, G. (2008). Finite Dimensional Vector Spaces Are Complete for Traced Symmetric Monoidal Categories. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds) Pillars of Computer Science. Lecture Notes in Computer Science, vol 4800. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78127-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78127-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78126-4

  • Online ISBN: 978-3-540-78127-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics