Abstract
In the paper, a new memetic algorithm for decision tree learning is presented. The proposed approach consists in extending an existing evolutionary approach for global induction of classification trees. In contrast to the standard top-down methods, it searches for the optimal univariate tree by evolving a population of trees. Specialized genetic operators are selectively applied to modify both tree structures and tests in non-terminal nodes. Additionally, a local greedy search operator is embedded into the algorithm, which focusses and speeds up the evolutionary induction. The problem of over-fitting is mitigated by suitably defined fitness function. The proposed method is experimentally validated and preliminary results show that the proposed approach is able to effectively induce accurate and concise decision trees.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Bennett, K., Cristianini, N., Shave-Taylor, J., Wu, D.: Enlarging the margins in perceptron decision trees. Machine Learning 41, 295–313 (2000)
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth Int. Group (1984)
Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(1), 54–68 (2003)
Chai, B., Huang, T., Zhuang, X., Zhao, Y., Sklansky, J.: Piecewise-linear classifiers using binary tree structure and genetic algorithm. Pattern Recognition 29(11), 1905–1917 (1996)
Esposito, F., Malerba, D., Semeraro, G.: A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 476–491 (1997)
Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc. of IJCAI 1993, pp. 1022–1027. Morgan Kaufmann, San Francisco (1993)
Fu, Z., Golden, B., Lele, S., Raghavan, S., Wasil, E.: A genetic algorithm-based approach for building accurate decision trees. INFORMS Journal on Computing 15(1), 3–22 (2003)
Koza, J.: Concept formation and decision tree induction using genetic programming paradigm. In: Schwefel, H.-P., Männer, R. (eds.) PPSN I. LNCS, vol. 496, pp. 124–128. Springer, Heidelberg (1991)
Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Transactions on Evolutionary Computation 9(5), 474–488 (2005)
Krȩtowski, M.: An evolutionary algorithm for oblique decision tree induction. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 432–437. Springer, Heidelberg (2004)
Krȩtowski, M., Grześ, M.: Global learning of decision trees by an evolutionary algorithm. In: Information Processing and Security Systems, pp. 401–410. Springer, Heidelberg (2005)
Krȩtowski, M., Grześ, M.: Evolutionary learning of linear trees with embedded feature selection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 400–409. Springer, Heidelberg (2006)
Krȩtowski, M., Grześ, M.: Evolutionary induction of mixed decision trees. International Journal of Data Warehousing and Mining 3(4), 68–82 (2007)
Llora, X., Garrell, J.: Evolution of decision trees. In: Proc. of CCAI 2001, pp. 115–122. ACIA Press (2001)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)
Papagelis, A., Kalles, D.: Breeding decision trees using evolutionary techniques. In: Proc. of ICML 2001, pp. 393–400. Morgan Kaufmann, San Francisco (2001)
Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krȩtowski, M. (2008). A Memetic Algorithm for Global Induction of Decision Trees. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-540-77566-9_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77565-2
Online ISBN: 978-3-540-77566-9
eBook Packages: Computer ScienceComputer Science (R0)