Nothing Special   »   [go: up one dir, main page]

Skip to main content

Partitioning-Clustering Techniques Applied to the Electricity Price Time Series

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2007 (IDEAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4881))

Abstract

Clustering is used to generate groupings of data from a large dataset, with the intention of representing the behavior of a system as accurately as possible. In this sense, clustering is applied in this work to extract useful information from the electricity price time series. To be precise, two clustering techniques, K-means and Expectation Maximization, have been utilized for the analysis of the prices curve, demonstrating that the application of these techniques is effective so to split the whole year into different groups of days, according to their prices conduct. Later, this information will be used to predict the price in the short time period. The prices exhibited a remarkable resemblance among days embedded in a same season and can be split into two major kind of clusters: working days and festivities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amjady, N.: Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Transactions on Power Systems 21(2), 887–896 (2006)

    Article  Google Scholar 

  2. Conejo, A.J., Plazas, M.A., Espńnola, R., Molina, B.: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Transactions on Power Systems 20(2), 1035–1042 (2005)

    Article  Google Scholar 

  3. Cramér, H.: Mathematical methods of statistics. Princeton Univ. Press (1946)

    Google Scholar 

  4. García, R.C., Contreras, J., van Akkeren, M., García, J.B.: A GARCH forecasting model to predict day-ahead electricity prices. IEEE Transactions on Power Systems 20(2), 867–874 (2005)

    Article  Google Scholar 

  5. García-Martos, C., Rodríguez, J., Sánchez, M.J.: Mixed models for short-run forecasting of electricity prices: Application for the spanish market. IEEE Transactions on Power Systems 22(2), 544–552 (2007)

    Article  Google Scholar 

  6. Guha, S., Rastogi, R., Shim, K.: A framework for electricity price spike analysis with advanced data mining methods. IEEE Transactions on Power Systems 22(1), 376–385 (2007)

    Article  Google Scholar 

  7. Kaufman, L., Rousseeuw, P.J.: Finding groups in Data: an Introduction to Cluster Analysis. Wiley, Chichester (1990)

    Google Scholar 

  8. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 1137–1143 (1995)

    Google Scholar 

  9. Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19(2), 191–201 (1995)

    Article  MATH  Google Scholar 

  10. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statististics and Probability, pp. 281–297 (1968)

    Google Scholar 

  11. Martínez-Álvarez, F., Troncoso, A., Riquelme, J.C., Riquelme, J.M.: Discovering patterns in electricity prices using clustering techniques. In: Proceedings of the International Conference on Renewable Energies and Power Quality (2007)

    Google Scholar 

  12. Spanish Electricity Price Market Operator, http://www.omel.es

  13. Plazas, M.A., Conejo, A.J., Prieto, F.J.: Multimarket optimal bidding for a power producer. IEEE Transactions on Power Systems 20(4), 2041–2050 (2005)

    Article  Google Scholar 

  14. Troncoso, A., Riquelme, J.C., Riquelme, J.M., Martínez, J.L., Gómez, A.: Electricity market price forecasting based on weighted nearest neighbours techniques. IEEE Transactions on Power Systems 22(3), 1294–1301 (2007)

    Article  Google Scholar 

  15. Xu, R., Wunsch II., D.C.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  16. Zacks, S.: The theory of statistical inference. Wiley, Chichester (1946)

    Google Scholar 

  17. Zareipour, H., Bhattacharya, K., Cañizares, C.A.: Forecasting the hourly Ontario energy price by multivariate adaptive regression splines. IEEE Transactions on Power Systems 20(2), 1035–1042 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hujun Yin Peter Tino Emilio Corchado Will Byrne Xin Yao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Álvarez, F., Troncoso, A., Riquelme, J.C., Riquelme, J.M. (2007). Partitioning-Clustering Techniques Applied to the Electricity Price Time Series. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77226-2_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77225-5

  • Online ISBN: 978-3-540-77226-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics