Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Cross-Entropy Method/Hopfield Neural Network for Combinatorial Optimization Problems

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2007 (IDEAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4881))

Abstract

This paper presents a novel hybrid algorithm for combinatorial optimization problems based on mixing the cross-entropy (CE) method and a Hopfield neural network. The algorithm uses the CE method as a global search procedure, whereas the Hopfield network is used to solve the constraints associated to the problems. We have shown the validity of our approach in several instance of the generalized frequency assignment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Talbi, E.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8, 541–564 (2002)

    Article  Google Scholar 

  2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 35, 268–308 (2003)

    Article  Google Scholar 

  3. Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)

    Article  Google Scholar 

  4. Rubinstein, R.Y.: The simulated entropy method for combinatorial and continous optimization. Methodology and computing in applied probability 2, 127–190 (2002)

    Google Scholar 

  5. Rubinstein, R.Y., Kroese, D.P.: The cross-entropy method: a unified approach to combinatorial optimization, Monte-carlo simulation and machine learning. Springer, NY (2004)

    MATH  Google Scholar 

  6. Hopfield, J.: Neurons and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  7. De Boer, P., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Annals of Operations Research 134, 19–67 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shrivastava, Y., Dasgupta, S., Reddy, S.: Guaranteed convergence in a class of Hopfield networks. IEEE Trans. Neural Networks 3, 951–961 (1992)

    Article  Google Scholar 

  9. Salcedo-Sanz, S., Bousoño-Calzón, C.: A portable and scalable algorithm for a class of constrained combinatorial optimization problems. Computers & Operations Research 32, 2671–2687 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Balicki, J., Stateczny, A., Zak, B.: Genetic algorithms and Hopfield neural networks to solve combinatorial optimization problems. Applied Mathematics and Computer Science 10(3), 568–592 (1997)

    MathSciNet  Google Scholar 

  11. Watanabe, Y., Mizuguchi, N., Fujii, Y.: Solving optimization problems by using a Hopfield neural network and genetic algorithm combination. Systems and Computers in Japan 29(10), 68–73 (1998)

    Article  Google Scholar 

  12. Salcedo-Sanz, S., Bousoño-Calzón, C.: A hybrid neural-genetic algorithm for the frequency assignment problem in satellite communications. Applied Intelligence 22, 207–218 (2005)

    Article  MATH  Google Scholar 

  13. Bousoño-Calzón, C., Figueiras-Vidal, A.R.: Emergent techniques for dynamic frequency assignment: merging genetic algorithms and neural networks. In: Aerospace. Proc. of the RTO IST Symposium on Frequency Assignment, Sharing and Conservation in Systems, vol. 32, pp. 12/1–12/5 (1998)

    Google Scholar 

  14. Salcedo-Sanz, S., Santiago-Mozos, R., Bousoño-Calzón, C.: A hybrid Hopfield network-simulated annealing approach for frequency assignment in satellite communications systems. IEEE Trans. Systems, Man and Cybernetics, part B 34(2), 1108–1116 (2004)

    Article  Google Scholar 

  15. Calderón-Macías, C., Sen, M.K., Stoffa, P.L.: Hopfield neural networks, and mean field annealing for seismic deconvolution and multiple attenuation. Geophysics 62(3), 992–1002 (1997)

    Article  Google Scholar 

  16. Funabiki, N., Takefuji, Y.: A neural network parallel algorithm for channel assignment problems in cellular radio networks. IEEE Trans. Veh. Technol. 42(4), 430–437 (1992)

    Article  Google Scholar 

  17. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  18. Lai, W.K., Coghill, G.C.: Channel assignment through evolutionary optimization. IEEE Trans. Veh. Technol. 55(1), 91–95 (1996)

    Article  Google Scholar 

  19. José-Revuelta, L.M.S.: A new adaptive genetic algorithm for fixed channel assignment. Information Sciences 177(13), 2655–2678 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hujun Yin Peter Tino Emilio Corchado Will Byrne Xin Yao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortiz-García, E.G., Pérez-Bellido, Á.M. (2007). Hybrid Cross-Entropy Method/Hopfield Neural Network for Combinatorial Optimization Problems. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_116

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77226-2_116

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77225-5

  • Online ISBN: 978-3-540-77226-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics