Abstract
Management of extreme events is required of a special consideration, as well as a sufficiently wide time horizon for solvency evaluation. Whereas their classical adjustment is usually carried out with Extreme Value Theory (EVT)-based distributions (namely, the Generalized Pareto Distribution), Evolutionary Techniques have been tried herein to fit the GPD parameters as an optimisation problem. The comparison between classical and evolutionary techniques highlights the accuracy of the evolutionary process. Data adjusted in this paper come from a Spanish motor liability insurance portfolio.
Funded by CICYT TSI2005-07344, MADRINET S-0505/TIC/0255 and AUTOPIA IMSERSO.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Këllezi, E., Gilli, M.: Extreme Value Theory for Tail-Related Risk Measures. Kluwer Academic Publishers, Dordrecht (2000)
Holland, J.H: Adaptation in natural an artificial Systems, MIT Press, Bradford Books edition, Michigan, MI (1975)
García, J., Pérez, M.J., Berlanga, A., Molina, J.M.: Adjustment of Claims Rate with Evolution Strategies in a Mathematical Model for Insurance Loss Ratio, Internet, e-com and Artifcial Intelligence. In: III International Workshop on Practical Applications of Agents and Multiagent Systems, Burgos, Spain, pp. 173–182 (2004)
Pérez, M.J., García, J., Martí, L., Molina, J.M.: Multiobjective Optimization Evolutionary Algorithms in Insurance-Linked Derivatives. In: Bernard, J.-F. (ed.) Handbook of Research on Nature Inspired Computing for Economy and Management, vol. II, pp. 885–908. Idea Group Inc, USA (2006)
Schewefel, H.-P.: Evolutionary learning optimum-seeking on parallel computer architectures. In: Sydow, A., Tzafestas, S.G., Vichnevetsky, R. (eds.) Proceedings of the International Symposium on Systems Analysis and Simulation 1988, I: Theory and Foundations, pp. 217–225. Akademie-Verlag, Berlin (1988)
Beirlant, J., Teugels, J.L., Vynckier, P.: Practical Analysis of Extreme Values. Leuven University Press, Leuven (1996)
De Haan, L., Ferreira, A.: Extreme value theory: An introduction. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling extremal events for Insurance and Finance. In: Applications of Mathematics, Springer, Heidelberg (1997)
Kotz, S., Nadarajah, S.: Extreme value distributions. Theory and Applications. Imperial College Press, London (2000)
Reiss, R.D., Thomas, M.: Statistical Analysis of Extreme Values with applications to insurance, finance, hydrology and other fields, 2nd edn. Birkhäuser (2001)
Fogel, D.B.: The Advantages of Evolutionary Computation. In: Lundh, D., Olsson, B., Narayanan, A. (eds.) Proc. of BCEC97: BioComputing and Emergent Computation, pp. 1–11. World Scientific, Singapore (1997)
Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Inc, Oxford (1996)
Törn, A., Zilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez-Fructuoso, M.J., García, A., Berlanga, A., Molina, J.M. (2007). Adjusting the Generalized Pareto Distribution with Evolution Strategies – An application to a Spanish Motor Liability Insurance Database. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_101
Download citation
DOI: https://doi.org/10.1007/978-3-540-77226-2_101
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77225-5
Online ISBN: 978-3-540-77226-2
eBook Packages: Computer ScienceComputer Science (R0)