Nothing Special   »   [go: up one dir, main page]

Skip to main content

Video Summarisation for Surveillance and News Domain

  • Conference paper
Semantic Multimedia (SAMT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4816))

Included in the following conference series:

Abstract

Video summarization approaches have various fields of application, specifically related to organizing, browsing and accessing large video databases. In this paper we propose and evaluate two novel approaches for video summarization, one based on spectral methods and the other on ant-tree clustering. The overall summary creation process is broke down in two steps: detection of similar scenes and extraction of the most representative ones. While clustering approaches are used for scene segmentation, the post-processing logic merges video scenes into a subset of user relevant scenes. In the case of the spectral approach, representative scenes are extracted following the logic that important parts of the video are related with high motion activity of segments within scenes. In the alternative approach we estimate a subset of relevant video scene using ant-tree optimization approaches and in a supervised scenario certain scenes of no interest to the user are recognized and excluded from the summary. An experimental evaluation validating the feasibility and the robustness of these approaches is presented.

The research leading to this document has received funding from the European Community’s Sixth Framework Programme. However, it reflects only the author’s views, and the European Community is not liable for any use that may be made of the information contained therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calic, J., Izquierdo, E.: Towards real time shot detection in the MPEG compressed domain. In: Proceedings of the Workshop on Image Analysis for Multimedia Interactive Services (2001)

    Google Scholar 

  2. Yeo, L.B., Liu, B.: Rapid scene analysis on compressed video. IEEE Transactions on Circuits & Systems for Video Technology 5, 533–544 (1995)

    Article  Google Scholar 

  3. Lee, J., Lee, G.G., Kim, W.Y.: Automatic video summarizing tool using MPEG-7 descriptors for personal video recorder. IEEE Transaction on Consumer Electronics 49, 742–749 (2003)

    Article  Google Scholar 

  4. Rasheed, Z., Shan, M.: Detection and Representation of scenes in videos. IEEE Transactions on Multimedia 7, 1097–1105 (2005)

    Article  Google Scholar 

  5. Odobez, J., Gatica-Perez, D., Guillemot, M.: Video shot clustering using spectral methods. In: 3rd Workshop on Content Based Multimedia Indexing (CBMI) (2003)

    Google Scholar 

  6. Li, Z., Schuster, G.M., Katsaggelos, A.K.: MINMAX optimal video summarization. IEEE Transactions on Circuits and Systems for Video Technology 15, 1245–1256 (2005)

    Article  Google Scholar 

  7. Osuka, I., Radharkishnan, R., Siracusa, M., Divakaran, A., Mishima, H.: An enhanced video summarization system using audio features for personal video recorder. IEEE Transactions on Consumer Electronics 52, 168–172 (2006)

    Google Scholar 

  8. Wang, Y., Zhang, T., Tretter, D.: Real time motion analysis towards semantic understanding of video content. In: Conference on Visual Communications and Image Processing (2005)

    Google Scholar 

  9. Peker, K.A., Alatan, A.A., Akansu, A.N.: Low level motion activity features for semantic characterization of video. IEEE International Conference on Multimedia and Expo 2, 801–804 (2000)

    Google Scholar 

  10. Peyrard, N., Bouthemy, P.: Motion-based selection of relevant video segments for video summarization. Multimedia Tools and Applications, pp. 259-276 (2005)

    Google Scholar 

  11. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on PAMI 22, 888–905 (2000)

    Google Scholar 

  12. Alpert, C., Khang, A., Yao, S.: Spectral partitioning: The more eigenvectors, the better. Discrete Applied Mathematics (1999)

    Google Scholar 

  13. Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7. John Willey & Sons, New York, NY (2002)

    Google Scholar 

  14. Zheng, X., Lin, X.: Automatic determination of intrinsic cluster number family in spectral clustering using random walk on graph. In: ICIP 2004. International Conference on Image Processing, vol. 5, pp. 3471–3474 (2004)

    Google Scholar 

  15. Meila, M., Shi, J.: A random walks view of spectral segmentation. AI and Statistic (2001)

    Google Scholar 

  16. Holldobler, B., Wilson, E.O.: The Ants. Springer, Heidelberg (1990)

    Google Scholar 

  17. Dorigo, M., Di Caro, G.: Ant Algorithms for Discrete Optimization. Technical Report, pp. 98–10 (1999)

    Google Scholar 

  18. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artifical Systems. Oxford University Press, Oxford (1999)

    Google Scholar 

  20. Lumer, E., Faieta, B.: Diversity and Adaptation in Populations of Clustering Ants. In: 3tl1 Conference on simulation and adaptive behavior-: from animals to animats, pp. 501–508 (1994)

    Google Scholar 

  21. Kuntz, P., Snyers, D., Layzell, P.: A stochastic heuristic for visualizing graph clusters in a hi-dimensional space prior to partitioning. Journal of Heuristic 5 (1999)

    Google Scholar 

  22. Labroche, N., Monmarche, N., Venturini, G.: A new clustering algorithm based on the chemical recognition system of ants. In: Proceedings of the 15th European Conference on Artifical Inteligence (2002)

    Google Scholar 

  23. Azzag, N., Monmarch, H., Slimane, M., Venturini, G., Guinot, C.: Antree: a new model for clustering with artificial ants. In: IEEE Congress on Evolutionary Computation, pp. 8–12 (2003)

    Google Scholar 

  24. Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.L.: The dynamics of chain formation in Oecophylia longinoda. Journal of Insect Behavior 14, 679–696 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bianca Falcidieno Michela Spagnuolo Yannis Avrithis Ioannis Kompatsiaris Paul Buitelaar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damnjanovic, U., Piatrik, T., Djordjevic, D., Izquierdo, E. (2007). Video Summarisation for Surveillance and News Domain. In: Falcidieno, B., Spagnuolo, M., Avrithis, Y., Kompatsiaris, I., Buitelaar, P. (eds) Semantic Multimedia. SAMT 2007. Lecture Notes in Computer Science, vol 4816. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77051-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77051-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77033-6

  • Online ISBN: 978-3-540-77051-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics