Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing

  • Conference paper
Emerging Technologies in Knowledge Discovery and Data Mining (PAKDD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4819))

Included in the following conference series:

  • 1632 Accesses

Abstract

In this paper, we propose a privacy preserving distributed clustering protocol for horizontally partitioned data based on a very efficient homomorphic additive secret sharing scheme. The model we use for the protocol is novel in the sense that it utilizes two non-colluding third parties. We provide a brief security analysis of our protocol from information theoretic point of view, which is a stronger security model. We show communication and computation complexity analysis of our protocol along with another protocol previously proposed for the same problem. We also include experimental results for computation and communication overhead of these two protocols. Our protocol not only outperforms the others in execution time and communication overhead on data holders, but also uses a more efficient model for many data mining applications.

This work was partially funded by the Information Society Technologies Programme of the European Commission, Future and Emerging Technologies under IST-014915 GeoPKDD project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Inan, A., Saygın, Y., Savaş, E., Hintoğlu, A.A., Levi, A.: Privacy preserving clustering on horizontally partitioned data. In: Privacy Preserving Clustering on Horizontally Partitioned Data, p. 95. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD 2000. Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 439–450. ACM Press, New York (2000)

    Chapter  Google Scholar 

  3. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: PODS 2003. Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 211–222. ACM Press, New York (2003)

    Chapter  Google Scholar 

  5. Evfimievski, A., Srikant, R., Agarwal, R., Gehrke, J.: Privacy preserving mining of association rules. Inf. Syst. 29(4), 343–364 (2004)

    Article  Google Scholar 

  6. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: Random-data perturbation techniques and privacy-preserving data mining. Knowl. Inf. Syst. 7(4), 387–414 (2005)

    Article  Google Scholar 

  7. Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of association rules. SIGMOD Rec. 30(4), 45–54 (2001)

    Article  Google Scholar 

  8. Kantarcıoğlu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data Engineering 16(9), 1026–1037 (2004)

    Article  Google Scholar 

  9. Oliveira, S., Zaiane, O.R.: Privacy preserving clustering by data transformation. In: 18th Brazilian Symposium on Databasesn, pp. 304–318 (2003)

    Google Scholar 

  10. Oliveira, S., Zaiane, O.R.: Achieving privacy preservation when sharing data for clustering. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178, pp. 67–82. Springer, Heidelberg (2004)

    Google Scholar 

  11. Oliveira, S., Zaiane, O.R.: Privacy-preserving clustering by object similarity-based representation and dimensionality reduction transformation. In: Workshop on Privacy and Security Aspects of Data Mining (PSDM 2004) in conjunction with the Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 21–30 (2004)

    Google Scholar 

  12. Merugu, S., Ghosh, J.: Privacy-preserving distributed clustering using generative models. In: ICDM 2003. Proceedings of the Third IEEE International Conference on Data Mining, Washington, DC, USA, pp. 211–218. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  13. Klusch, M., Lodi, S., Moro, G.: Distributed clustering based on sampling local density estimates. In: IJCAI 2003. Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 485–490. AAAI Press (2003)

    Google Scholar 

  14. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In: KDD 2003. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 206–215. ACM Press, New York (2003)

    Chapter  Google Scholar 

  15. Jha, S., Kruger, L.P.M.: Privacy preserving clustering. In: ESORICS’05:10th European Symposium On Research In Computer Security, pp. 397–417 (2005)

    Google Scholar 

  16. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory 29(2) (1983)

    Google Scholar 

  17. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takashi Washio Zhi-Hua Zhou Joshua Zhexue Huang Xiaohua Hu Jinyan Li Chao Xie Jieyue He Deqing Zou Kuan-Ching Li Mário M. Freire

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaya, S.V., Pedersen, T.B., Savaş, E., Saygıýn, Y. (2007). Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing. In: Washio, T., et al. Emerging Technologies in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science(), vol 4819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77018-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77018-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77016-9

  • Online ISBN: 978-3-540-77018-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics