Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Biosignal Data: Coronary Artery Disease Diagnosis Using Linear and Nonlinear Features of HRV

  • Conference paper
Emerging Technologies in Knowledge Discovery and Data Mining (PAKDD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4819))

Included in the following conference series:

Abstract

The main purpose of our study is to propose a novel methodology to develop the multi-parametric feature including linear and nonlinear features of HRV (Heart Rate Variability) diagnosing cardiovascular disease. To develop the multi-parametric feature of HRV, we used the statistical and classification techniques. This study analyzes the linear and the non-linear properties of HRV for three recumbent positions, namely the supine, left lateral and right lateral position. Interaction effect between recumbent positions and groups (normal and patients) was observed based on the HRV indices and the extracted HRV indices used to classify the CAD (Coronary Artery Disease) group from the normal people. We have carried out various experiments on linear and non-linear features of HRV indices to evaluate several classifiers, e.g., Bayesian classifiers, CMAR, C4.5 and SVM. In our experiments, SVM outperformed the other classifiers.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (The Regional Research Universities Program/Chungbuk BIT Research-Oriented University Consortium).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guzzetti, S., Magatelli, R., Borroni, E., Mezzetti, S.: Heart rate variability in chronic heart failure American Neuroscience. Basic and Clinical 90, 102–105 (2001)

    Article  Google Scholar 

  2. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Guidelines of Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)

    Google Scholar 

  3. Lombardi, F., Malliani, A., Pagani, M., Cerutti, S.: Heart rate variability and its sympatho-vagal modulation. Cardiovasc. Res. 32(2), 208–216 (1996)

    Article  Google Scholar 

  4. Mezzacappa, E., Kindlon, D., Earls, F., Saul, J.P.: The utility of spectral analytic techniques in the study of the autonomic regulation of beat-to-beat heart-rate-variability. Int. J. Methods Psychiatr. Res. 4, 29–44 (1994)

    Google Scholar 

  5. Wagner, C.D., Persson, P.B.: Chaos in blood pressure control. Cardio. Res. 380–387 (1996)

    Google Scholar 

  6. Tompkins, W.J.: Bimedical digital signal processing, p. 07458. Prentice Hall PTR, Upper Saddle River, New Jersey (1995)

    Google Scholar 

  7. Noh, K.Y., Lee, H.G., Lee, B.J., Shon, H.S., Ryu, K.H.: Associative Classification Approach for Diagnosing Cardiovascular Disease. In: Int. Conf. on Intelligent Computing. LNCIS, vol. 345, pp. 721–727 (2006)

    Google Scholar 

  8. Lee, H.G., Noh, K.Y., Lee, B.J., Shon, H.S., Ryu, K.H.: Cardiovascular Disease Diagnosis Method by Emerging Patterns. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 819–826. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Pumprla, J., Howorka, K., Groves, D., Chester, M., Nolan, J.: Functional assessment of heart rate variability: physiological basis and practical applications. Int. J. Cardio. 84, 1–14 (2002)

    Article  Google Scholar 

  10. Brennan, M., Palaniswami, M., Kamen, P.: Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 48(11), 1342–1347 (2001)

    Article  Google Scholar 

  11. Moraru, L., Tong, S., Malhotra, A., Geocadin, R., Thakor, N., Bezerianos, A.: Investigation of the effects of ischemic preconditioning on the HRV response to transient global ischemia using linear and nonlinear methods. Med. Eng. & Physics 27, 465–473 (2005)

    Article  Google Scholar 

  12. Tulppo, M.P., Makikallio, T.H., Takala, T.E.S., Seppanen, T.: Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J. Physiol. 271, 244–252 (1996)

    Google Scholar 

  13. Tulppo, M.P., Husghson, R.L., Makilkallio, T.H., Airaksinen, K.E.J., Huikuri, H.V.: Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J. Phyisol. Heart Circ. Physiol. 280, H1081–H1087 (2001)

    Google Scholar 

  14. Takens, F.: Detecting strange attractors in turbulence. In: Eckmann B.D.A. (ed.). Lectures Notes in Mathematics, vol. 898, pp. 366–381. Springer, Heidelberg (1981)

    Google Scholar 

  15. Pincus, S.M., Goldberger, A.L.: Physiological time series analysis: what does regularity quantify? Am J. Physiol. 266, H1643–H1656 (1994)

    Google Scholar 

  16. Fayyad, U.M., Irani, K.B.: Multi-Interval discretization of continuous-valued attributes for classification learning. In: Proc. of the Interna’l Joint Conference. on AI, pp. 1022–1027 (1993)

    Google Scholar 

  17. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  18. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification Based on Multiple Association Rules. In: Proc. of 2001 Interna’l Conference on Data Mining (2001)

    Google Scholar 

  19. Chen, J., Greiner, R.: Comparing Bayesian Network Classifiers. In Proc. of UAI-99, pp. 101–108 (1999)

    Google Scholar 

  20. Java Bayesian Network Classifier Toolkit, http://jbnc.sourceforge.net

  21. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  22. Weka Machine Learning Project, http://www.cs.waikato.ac.nz/~ml/weka/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takashi Washio Zhi-Hua Zhou Joshua Zhexue Huang Xiaohua Hu Jinyan Li Chao Xie Jieyue He Deqing Zou Kuan-Ching Li Mário M. Freire

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H.G., Noh, K.Y., Ryu, K.H. (2007). Mining Biosignal Data: Coronary Artery Disease Diagnosis Using Linear and Nonlinear Features of HRV. In: Washio, T., et al. Emerging Technologies in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science(), vol 4819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77018-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77018-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77016-9

  • Online ISBN: 978-3-540-77018-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics