Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extracting Features from Gene Ontology for the Identification of Protein Subcellular Location by Semantic Similarity Measurement

  • Conference paper
Emerging Technologies in Knowledge Discovery and Data Mining (PAKDD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4819))

Included in the following conference series:

Abstract

It is necessary to find a computational method for prediction of protein subcellular location (SCL). Many researches have focused on the topic. Among them, methods incorporated Gene Ontology (GO) achieved higher prediction accuracy. However the former method of extracting features from GO have some disadvantages. In this paper, to increase the accuracy of the prediction, we present a novel method to extract features from GO by semantic similarity measurement, which is hopeful to overcome the disadvantages of former method. Testing on a public available dataset shows satisfied results. And this method can also be used in similar scenarios in other bioinformatics researches or data mining process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rey, S., Acab, M., Gardy, J.L., Laird, M.R., deFays, K., Lambert, C., Brinkman, F.S.L.: PSORTdb: a protein subcellular localization database for bacteria. Nucleic Acids Research 33 (2005)

    Google Scholar 

  2. Yu, C.S., Chen, Y.C., Lu, C.H., Hwang, J.K.: Prediction of protein subcellular localization. Proteins-Structure Function and Bioinformatics 64, 643–651 (2006)

    Article  Google Scholar 

  3. Hua, S.J., Sun, Z.R.: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17, 721–728 (2001)

    Article  Google Scholar 

  4. Cai, Y.D., Chou, K.C.: Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochemical and Biophysical Research Communications 305, 407–411 (2003)

    Article  Google Scholar 

  5. Gardy, J.L., Spencer, C., Wang, K., Ester, M., Tusnady, G.E., Simon, I., Hua, S., deFays, K., Lambert, C., Nakai, K., Brinkman, F.S.L.: PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Research 31, 3613–3617 (2003)

    Article  Google Scholar 

  6. Nakai, K.: Protein sorting signals and prediction of subcellular localization. Advances in Protein Chemistry 5454, 277–344 (2000)

    Article  Google Scholar 

  7. Reinhardt, A., Hubbard, T.: Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Research 26, 2230–2236 (1998)

    Article  Google Scholar 

  8. Chou, K.C., Cai, Y.D.: A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology. Biochemical and Biophysical Research Communications 311, 743–747 (2003)

    Article  Google Scholar 

  9. Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bradley, P., Bork, P., Bucher, P., Cerutti, L., Copley, R., Courcelle, E., Das, U., Durbin, R., Fleischmann, W., Gough, J., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McDowall, J., Mitchell, A., Nikolskaya, A.N., Orchard, S., Pagni, M., Pointing, C.P., Quevillon, E., Selengut, J., Sigrist, C.J.A., Silventoinen, V., Studholme, D.J., Vaughan, R., Wu, C.H.: InterPro, progress and status in 2005. Nucleic Acids Research 33, 201–205 (2005)

    Article  Google Scholar 

  10. Su, C.-Y., Lo, A., Lin, C.-C., Chang, F., Hsu, W.-L.: A Novel Approach for Prediction of Multi-Labeled Protein Subcellular Localization for Prokaryotic Bacteria. IEEE The Computational Systems Bioinformatics Conference, Stanford (2005)

    Google Scholar 

  11. Lu, Z., Hunter, L.: GO Molecular Function Terms Are Predictive of Subcellular Localization. In: Pacific Symposium on Biocomputing, vol. 4-8, World Scientific, Hawaii, USA (2005)

    Google Scholar 

  12. Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19, 1275–1283 (2003)

    Article  Google Scholar 

  13. Li, R., Cao, S.L., Li, Y.Y., Tan, H., Zhu, Y.Y., Zhong, Y., Li, Y.X.: A measure of semantic similarity between gene ontology terms based on semantic pathway covering. Progress in Natural Science 16, 721–726 (2006)

    Article  MathSciNet  Google Scholar 

  14. Zhong, J.W., Zhu, H.P., Li, J.M., Yu, Y.: Conceptual graph matching for semantic search. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 92–106. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Rey, S., Acab, M., Gardy, J.L., Laird, M.R., DeFays, K., Lambert, C., Brinkman, F.S.L.: PSORTdb: a protein subcellular localization database for bacteria. Nucleic Acids Research 33, D164–D168 (2005)

    Article  Google Scholar 

  16. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. Software (2001), available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm

  17. Hua, S.J., Sun, Z.R.: A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach. Journal of Molecular Biology 308, 397–407 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takashi Washio Zhi-Hua Zhou Joshua Zhexue Huang Xiaohua Hu Jinyan Li Chao Xie Jieyue He Deqing Zou Kuan-Ching Li Mário M. Freire

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, G., Sheng, H. (2007). Extracting Features from Gene Ontology for the Identification of Protein Subcellular Location by Semantic Similarity Measurement. In: Washio, T., et al. Emerging Technologies in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science(), vol 4819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77018-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77018-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77016-9

  • Online ISBN: 978-3-540-77018-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics