Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Methods to Select Informative Gene Sets in Microarray Data Classification

  • Conference paper
AI 2007: Advances in Artificial Intelligence (AI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4830))

Included in the following conference series:

Abstract

One of the key applications of microarray studies is to select and classify gene expression profiles of cancer and normal subjects. In this study, two hybrid approaches–genetic algorithm with decision tree (GADT) and genetic algorithm with neural network (GANN)–are utilized to select optimal gene sets which contribute to the highest classification accuracy. Two benchmark microarray datasets were tested, and the most significant disease related genes have been identified. Furthermore, the selected gene sets achieved comparably high sample classification accuracy (96.79% and 94.92% in colon cancer dataset, 98.67% and 98.05% in leukemia dataset) compared with those obtained by mRMR algorithm. The study results indicate that these two hybrid methods are able to select disease related genes and improve classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, X., Rao, S.Q., Wang, Y.D., Gong, B.S.: Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Research 32(9), 2685–2694 (2004)

    Article  Google Scholar 

  2. Yang, P.Y., Zhang, Z.L.: A Hybrid Approach to Selecting Susceptible Single Nucleotide Polymorphisms in Age-Related Macular Degeneration Diagnosis. submitted to Artificial Intelligence in Medicine

    Google Scholar 

  3. Li, L., Weinberg, C.R., Darden, T.A., Pedersen, L.G.: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142 (2001)

    Article  Google Scholar 

  4. Keedwell, E., Narayanan, A.: Genetic Algorithms for Gene Expression Analysis. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoBIO 2003. LNCS, vol. 2611, pp. 76–86. Springer, Heidelberg (2003)

    Google Scholar 

  5. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96, 6745–6750 (1999)

    Article  Google Scholar 

  6. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  7. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE transactions on pattern analysis and machine intelligence 27, 1226–1238 (2005)

    Article  Google Scholar 

  8. Bala, J., Huang, J., Vafaie, H., DeJong, K., Wechsler, H.: Hybrid Learning Using Genetic Algorithms and Decision Trees for Pattern Classification. In: IJCAI conference, Montreal (August 19-25, 1995)

    Google Scholar 

  9. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Journal of the the American Statistical Association 97, 77–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  11. Cho, S.B., Won, H.H.: Machine Learning in DNA Microarray Analysis for Cancer Classification. In: Conferences in Research and Practice in Information Technology, vol. 19 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mehmet A. Orgun John Thornton

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, P., Zhang, Z. (2007). Hybrid Methods to Select Informative Gene Sets in Microarray Data Classification. In: Orgun, M.A., Thornton, J. (eds) AI 2007: Advances in Artificial Intelligence. AI 2007. Lecture Notes in Computer Science(), vol 4830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76928-6_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76928-6_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76926-2

  • Online ISBN: 978-3-540-76928-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics