Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automated Scene-Specific Selection of Feature Detectors for 3D Face Reconstruction

  • Conference paper
Advances in Visual Computing (ISVC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4841))

Included in the following conference series:

Abstract

In comparison with 2D face images, 3D face models have the advantage of being illumination and pose invariant, which provides improved capability of handling changing environments in practical surveillance. Feature detection, as the initial process of reconstructing 3D face models from 2D uncalibrated image sequences, plays an important role and directly affects the accuracy and robustness of the resulting reconstruction. In this paper, we propose an automated scene-specific selection algorithm that adaptively chooses an optimal feature detector according to the input image sequence for the purpose of 3D face reconstruction. We compare the performance of various feature detectors in terms of accuracy and robustness of the sparse and dense reconstructions. Our experimental results demonstrate the effectiveness of the proposed selection method from the observation that the chosen feature detector produces 3D reconstructed face models with superior accuracy and robustness to image noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pollefeys, M., Gool, L., van Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J.: Visual modeling with a hand-held camera. Int’l J. of Computer Vision 59, 207–232 (2004)

    Article  Google Scholar 

  2. Kien, D.T.: A review of 3D reconstruction from video sequences. MediaMill3D Technical Report, University of Amsterdam (2005)

    Google Scholar 

  3. Lu, X., Jain, A.K., Colbry, D.: Matching 2.5D face scans to 3D models. IEEE Trans. on Pattern Analysis and Machine Intelligence 28, 31–43 (2006)

    Article  Google Scholar 

  4. Hu, Y., Jiang, D., Yan, S., Zhang, L., Zhang, H.: Automatic 3D reconstruction for face recognition. In: IEEE Int’l Conf. on Automatic Face and Gesture Recognition, Washington D.C, pp. 843–848 (2004)

    Google Scholar 

  5. Chowdhury, A.R., Chellappa, R., Krishnamurthy, S., Vo, T.: 3D face reconstruction from video using a generic model. In: IEEE Int’l Conf. on Multimedia and Expo, Lausanne, Switzerland, pp. 449–452 (2002)

    Google Scholar 

  6. Bozdogan, H.: Akaike’s information criterion and recent developments in information complexity. J. of Mathematical Psychology 44, 62–69 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Sukumar, S.R., Bozdogan, H., Page, D., Koschan, A., Abidi, A.: MuFeSaC: Learning when to use which feature detector. In: Accepted to the IEEE International Conference on Image Processing, San Antonio, TX (2007)

    Google Scholar 

  8. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int’l J. of Computer Vision 37, 151–172 (2000)

    Article  MATH  Google Scholar 

  9. Mahamud, S., Hebert, M., Omori, Y., Ponce, J.: Provably-convergent iterative methods for projective structure from motion. In: IEEE Conf. on Computer Vision and Pattern Recognition, Kauai, Hawaii, pp. 1018–1025 (2001)

    Google Scholar 

  10. Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: European Conf. on Computer Vision, Cambridge, England, pp. 709–720 (1996)

    Google Scholar 

  11. Pollefeys, M., Koch, R., van Gool, L.: Self-calibration and metric reconstruction in spite of varying and unknown intrinsic camera parameters. In: IEEE Int’l Conf. on Computer Vision, Bombay, India, pp. 90–95 (1998)

    Google Scholar 

  12. He, X.C., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Int’l Conf. on Pattern Recognition, Cambridge, England, pp. 791–794 (2004)

    Google Scholar 

  13. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int’l J. of Computer Vision 1, 63–68 (2004)

    Article  Google Scholar 

  14. Kovesi, P.: Phase congruency detects corners and edges. In: Australian Pattern Recognition Society Conf., Sydney, Australian, pp. 309–318 (2003)

    Google Scholar 

  15. Rosten, E., Drummond, T.: Machine learning for high speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Bebis Richard Boyle Bahram Parvin Darko Koracin Nikos Paragios Syeda-Mahmood Tanveer Tao Ju Zicheng Liu Sabine Coquillart Carolina Cruz-Neira Torsten Müller Tom Malzbender

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, Y., Sukumar, S., Abidi, B., Page, D., Koschan, A., Abidi, M. (2007). Automated Scene-Specific Selection of Feature Detectors for 3D Face Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76858-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76858-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76857-9

  • Online ISBN: 978-3-540-76858-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics