Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4803))

Abstract

Taxonomy learning is one of the major steps in ontology learning process. Manual construction of taxonomies is a time-consuming and cumbersome task. Recently many researchers have focused on automatic taxonomy learning, but still quality of generated taxonomies is not satisfactory. In this paper we have proposed a new compound similarity measure. This measure is based on both knowledge poor and knowledge rich approaches to find word similarity. We also used Neural Network model for combination of several similarity methods. We have compared our method with simple syntactic similarity measure. Our measure considerably improves the precision and recall of automatic generated taxonomies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In: Proceedings of the 2003 IEEE International Conference on Data Mining, pp. 541–544. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  2. Resnik, P.: Semantic similarity in a taxonomy: An information–based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 95–130 (1999)

    MATH  Google Scholar 

  3. Hahn, U., Schnattinger, K.: Towards text knowledge engineering. In: AAAI/IAAI, pp. 524–531 (1998)

    Google Scholar 

  4. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. Journal of Artificial Intelligence Research (JAIR) 24, 305–339 (2005)

    MATH  Google Scholar 

  5. Lin, D.: Automatic retrieval and clustering of similar words. In: COLING-ACL, pp. 768–774 (1998)

    Google Scholar 

  6. Gasperin, C., Gamallo, P., Agustini, A., Lopes, G., de Lima, V.: (Using syntactic contexts for measuring word similarity) available at: http://citeseer.ist.psu.edu/article/gasperin01using.html

  7. Terra, E., Clarke, C.: Frequency estimates for statistical word similarity measures. In: Proceedings of Human Language Technology conference North American chapter of the Association for Computational Linguistics, pp. 244–251 (2003)

    Google Scholar 

  8. Harris, Z.: Mathematical Structures of Language (1968)

    Google Scholar 

  9. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using web search engines. In: WWW 2007. Proceedings of the 16th international conference on World Wide Web, pp. 757–766. ACM Press, New York (2007)

    Google Scholar 

  10. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: Similarity - Measuring the relatedness of concepts. In: AAAI, pp. 1024–1025 (2004)

    Google Scholar 

  11. Leacock, C., Chodorow, M.: Combining local context and wordnet sense similiarity for word sense disambiguation. MIT Press, Cambridge (1998)

    Google Scholar 

  12. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. In: Proceedings of the 27th. Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 76–83 (1989)

    Google Scholar 

  13. Caraballo, S.: Automatic construction of a hypernym-labeled noun hierarchy from text. In: Proceedings of the Conference of the Association for Computational Linguistics (1999)

    Google Scholar 

  14. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)

    Google Scholar 

  15. Cimiano, P., Staab, S.: Learning concept hierarchies from text with a guided hierarchical clustering algorithm. Available at: http://citeseer.ist.psu.edu/article/cimiano05learning.html

  16. Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning taxonomic relations from heterogeneous sources. In: ECAI 2004. Proceedings of the Ontology Learning and Population Workshop (2004)

    Google Scholar 

  17. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th conference on Computational linguistics, Association for Computational Linguistics, pp. 539–545 (1992)

    Google Scholar 

  18. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics, Association for Computational Linguistics, pp. 57–64 (1999)

    Google Scholar 

  19. Cimiano, P., Staab, S.: Learning by googling. SIGKDD Explor. Newsl. 6(2), 24–33 (2004)

    Article  Google Scholar 

  20. Weber, N., Buitelaar, P.: Web-based ontology learning with ISOLDE. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

    Google Scholar 

  21. Ramakrishnan, Cartic, E.A.: TaxaMiner: Improving taxonomy label quality using latent semantic indexing (2005)

    Google Scholar 

  22. Ryu, P.M., Choi, K.S.: Taxonomy learning using term specificity and similarity. In: Proceedings of the 2nd Workshop on Ontology Learning and Population: Bridging the Gap between Text and Knowledge, Association for Computational Linguistics , pp.41–48 (2006)

    Google Scholar 

  23. Zanzotto, F.M., Moschitti, A.: Automatic learning of textual entailments with cross-pair similarities. In: ACL 2006. Proceedings of the 21st International Conference on Computational Linguistics, pp. 401–408 (2006)

    Google Scholar 

  24. Shamsfard, M., Barforoush, A.A.: The state of the art in ontology learning: a framework for comparison. Knowl. Eng. Rev. 18(4), 293–316 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert Meersman Zahir Tari

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neshati, M., Hassanabadi, L.S. (2007). Taxonomy Construction Using Compound Similarity Measure. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS. OTM 2007. Lecture Notes in Computer Science, vol 4803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76848-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76848-7_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76846-3

  • Online ISBN: 978-3-540-76848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics