Abstract
The existing approaches used to identify the relevant pathways in a given condition do not consider a number of important biological factors such as magnitude of each gene’s expression change, their position and interactions in the given pathways, etc. Recently, an impact analysis approach was proposed that considers these crucial biological factors to analyze regulatory pathways at systems biology level. This approach calculates perturbations induced by each gene in a pathway, and propagates them through the entire pathway to compute an impact factor for the given pathway. Here we propose an alternative approach that uses a linear system to compute the impact factor. Our proposed approach eliminates the possible stability problems when the perturbations are propagated through a pathway that contains positive feedback loops. Additionally, the proposed approach is able to consider the type of genes when calculating the impact factors.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Khatri, P., Drăghici, S., Ostermeier, G.C., Krawetz, S.A.: Profiling gene expression using Onto-Express. Genomics 79(2), 266–270 (2002)
Drăghici, S., Khatri, P., Martins, R.P., Ostermeier, G.C., Krawetz, S.A.: Global functional profiling of gene expression. Genomics 81(2), 98–104 (2003)
Khatri, P., Draghici, S.: Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21(18), 3587–3595 (2005)
Pavlidis, P., Qin, J., Arango, V., Mann, J.J., Sibille, E.: Using the gene ontology for microarray data mining: A comparison of methods and application to age effects in human prefrontal cortex. Neurochemical Research 29(6), 1213–1222 (2004)
Goeman, J.J., van de Geer, S.A., de Kort, F., van Houwelingen, H.C.: A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20(1), 93–99 (2004)
Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M.J., Patterson, N., Mesirov, J.P., Golub, T.R., Tamayo, P., Spiegelman, B., Lander, E.S., Hirschhorn, J.N., Altshuler, D., Groop, L.C.: Pgc-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature genetics 34(3), 267–273 (2003)
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceeding of The National Academy of Sciences of the USA 102(43), 15545–15550 (2005)
Tian, L., Greenberg, S.A., Kong, S.W., Altschuler, J., Kohane, I.S., Park, P.J.: Discovering statistically significant pathways in expression profiling studies. Proceeding of The National Academy of Sciences of the USA 102(38), 13544–13549 (2005)
Stelling, J.: Mathematical models in microbial systems biology. Current opinion in microbiology 7(5), 513–518 (2004)
Draghici, S., Khatri, P., Tarca, A.L., Amin, K., Done, A., Voichita, C., Georgescu, C., Romero, R.: A systems biology approach for pathway level analysis. Genome Research 17 (2007)
Doniger, S.W., Salomonis, N., Dahlquist, K.D., Vranizan, K., Lawlor, S.C., Conklin, B.R.: MAPPFinder: using Gene Ontology and GenMAPP to create a global gene expression profile from microarray data. Genome biology 4(1), R7 (2003)
Pan, D., Sun, N., Cheung, K.H., Guan, Z., Ma, L., Holford, M., Deng, X., Zhao, H.: PathMAPA: a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arbidopsis. BMC Bioinformatics 4(1), 56 (2003)
Pandey, R., Guru, R.K., Mount, D.W.: Pathway Miner: extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data. Bioinformatics 20(13), 2156–2158 (2004)
Breslin, T., Krogh, M., Peterson, C., Troein, C.: Signal transduction pathway profiling of individual tumor samples. BMC Bioinformatics 6, 1471–2105 (2005)
Robinson, P.N., Wollstein, A., Bohme, U., Beattie, B.: Ontologizing gene-expression microarray data: characterizing clusters with gene ontology. Bioinformatics 20(6), 979–981 (2004)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)
Haveliwala, T.: Efficient computation of PageRank. Technical Report 1999-31, Database Group, Computer Science Department, Stanford University (February 1999)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report (1998)
Canales, R.D., Luo, Y., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C., Hunkapiller, K., Jensen, R.V., Knight, C.R., Lee, K.Y., Ma, Y., Maqsodi, B., Papallo, A., Peters, E.H., Poulter, K., Ruppel, P.L., Samaha, R.R., Shi, L., Yang, W., Zhang, L., Goodsaid, F.M.: Evaluation of dna microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24(9), 1115–1122 (2006)
Draghici, S., Khatri, P., Eklund, A.C., Szallasi, Z.: Reliability and reproducibility issues in DNA microarray measurements. Trends Genet. 22(2), 101–109 (2006)
Hassan, S.S., Romero, R., Haddad, R., Hendler, I., Khalek, N., Tromp, G., Diamond, M.P., Sorokin, Y., Malone, J.J.: The transcriptome of the uterine cervix before and after spontaneous term parturition. Am. J. Obstet. Gynecol. 195(3), 778–786 (2006)
Hassan, S.S., Romero, R., Tarca, A.L., et al.: Signature pathways identified from gene expression profiles in the human uterine cervix before and after spontaneous term parturition. Am. J. Obstet. Gynecol. 197(3), 250.e1–250.e7 (2007)
Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2), 249–264 (2003)
Tarca, A.L., Carey, V.J., Chen, X.W., Romero, R., Draghici, S.: Machine learning and its applications to biology. PLoS Comput. Biol. 3(6), e116 (2007)
Smyth, G.K.: In: Limma: linear models for microarray data, pp. 397–420. Springer, New York (2005)
Saito, S., Shima, T., Nakashima, A., Shiozaki, A., Ito, M., Sasaki, Y.: What is the role of regulatory t cells in the success of implantation and early pregnancy? J. Assist Reprod. Genet. Epub. ahead of print (August 2007)
King, A., Kelly, R., Sallenave, J., Bocking, A., Challis, J.: Innate immune defences in the human uterus during pregnancy. Placenta Epub ahead of print (July 2007)
Tsatas, D., Baker, M.S., Rice, G.E.: Differential expression of proteases in human gestational tissues before, during and after spontaneous-onset labour at term. J. Reprod. Fertil. 116(1), 43–49 (1999)
Koelbl, H., Kirchheimer, J., Tatra, G.: Influence of delivery on plasminogen activator inhibitor activity. J. Perinat. Med. 17(2), 107–111 (1989)
Turpeenniemi-Hujanen, T., Feinberg, R.F., Kauppila, A., Puistola, U.: Extracellular matrix interactions in early human embryos: implications for normal implantation events. Fertil Steril 64(1), 132–138 (1995)
Xu, P., Wang, Y.L., Zhu, S.J., Luo, S.Y., Piao, Y.S., Zhuang, L.Z.: Expression of matrix metalloproteinase-2, -9, and -14, tissue inhibitors of metalloproteinase-1, and matrix proteins in human placenta during the first trimester. Biol. Reprod. 62(4), 988–994 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khatri, P., Draghici, S., Tarca, A.L., Hassan, S.S., Romero, R. (2007). A System Biology Approach for the Steady-State Analysis of Gene Signaling Networks. In: Rueda, L., Mery, D., Kittler, J. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2007. Lecture Notes in Computer Science, vol 4756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76725-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-76725-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76724-4
Online ISBN: 978-3-540-76725-1
eBook Packages: Computer ScienceComputer Science (R0)