Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Multi-stage Classifier for Face Recognition

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4844))

Included in the following conference series:

  • 2651 Accesses

Abstract

A novel face recognition scheme based on multi-stages classifier, which includes methods of support vector machine (SVM), Eigenface, and random sample consensus (RANSAC), is proposed in this paper. The whole decision process is conducted cascade coarse-to-fine stages. The first stage adopts one-against-one-SVM (OAO-SVM) method to choose two possible classes best similar to the testing image. In the second stage, “Eigenface” method was employed to select one prototype image with the minimum distance to the testing image in each of the two classes chosen. Finally, the real class is determined by comparing the geometric similarity, as done by “RANSAC” method, between these prototype images and the testing images. This multi-stage face recognition system has been tested on Olivetti Research Laboratory (ORL) face databases, and its experimental results give evidence that the proposed approach outperforms the other approaches either based on the single classifier or multi-parallel classifier, it can even obtain a nearly 100 percent recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Er, M.J., Chen, W., Wu, S.: High-Speed Face Recognition Based on Discrete Cosine Transform and RBF Neural Networks. IEEE Trans. Neural Networks 16(3), 679–691 (2005)

    Article  Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  3. Xiang, C., Fan, X.A., Lee, T.H: Face Recognition Using Recursive Fisher Linear Discriminant. IEEE Trans. on Image Processing 15(8), 2097–2105 (2006)

    Article  Google Scholar 

  4. Guo, G., Li, S.Z., Chan, K.L.: Support vector machines for face recognition. Image and Vision Computing 19, 631–638 (2001)

    Article  Google Scholar 

  5. Othman, H., Aboulnasr, T.: A Separable Low Complexity 2D HMM with Application to Face Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(10), 1229–1238 (2003)

    Article  Google Scholar 

  6. Lu, J.K., Plataniotis, N.A., Venetsanopoulos, N., Li, S.Z.: Ensemble-Based Discriminant Learning With Boosting for Face Recognition. IEEE Trans. on Neural Networks 17(1), 166–178 (2006)

    Article  Google Scholar 

  7. Kwak, K.C., Pedrycz, W.: Face recognition: A study in information fusion using fuzzy integral. Pattern Recognition Letters 26, 719–733 (2005)

    Article  Google Scholar 

  8. Rajagopalan, A.N., Rao, K.S., Kumar, Y.A.: Face recognition using multiple facial features. Pattern Recognition Letters 28, 335–341 (2007)

    Article  Google Scholar 

  9. Zhou, D., Yang, X., Peng, N., Wang, Y.: Improved-LDA based face recognition using both facial global and local information. Pattern Recognition Letters 27, 536–543 (2006)

    Article  Google Scholar 

  10. Zhao, Z.Q., Huang, D.S., Sun, B.Y.: Human face recognition based on multi-features using neural networks committee. Pattern Recognition Letters 25, 1351–1358 (2004)

    Article  Google Scholar 

  11. Lemieux, A., Parizeau, M.: Flexible multi-classifier architecture for face recognition systems. In: 16th Int. Conf. on Vision Interface (2003)

    Google Scholar 

  12. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Network 13(2), 415–425 (2002)

    Article  Google Scholar 

  13. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  14. Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon, I., Jackel, L., LeCun, Y., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of classifier methods: a case study in handwriting digit recognition. In: International Conference on Pattern Recognition, pp. 77–87. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  15. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Advances in Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press, Cambridge (2000)

    Google Scholar 

  16. Ratsch, G., Onoda, T., Muller, K.R.: Soft Margins for AdaBoost. Machine Learning 42, 287–320 (2001)

    Article  Google Scholar 

  17. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  18. ORL face database, http://www.uk.research.att.com/facedatabase.html

  19. Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  20. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  21. Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 131–137 (2004)

    Article  Google Scholar 

  22. Kwak, K.C., Pedrycz, W.: Face recognition using a fuzzy fisferface classifier. Pattern Recognition 38, 1717–1732 (2005)

    Article  Google Scholar 

  23. Li, B., Liu, Y.: When eigenfaces are combined with wavelets. Knowledge-Based Systems 15, 343–347 (2002)

    Article  Google Scholar 

  24. Phiasai, T., Arunrungrusmi, S., Chamnongthai, K.: Face recognition system with PCA and moment invariant method. In: Proc. of the IEEE International Symposium on Circuits and Systems, vol. 2, pp. 165–168 (2001)

    Google Scholar 

  25. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using LDA-based algorithms. IEEE Trans. on Neural Networks 14, 195–200 (2003)

    Article  Google Scholar 

  26. Chien, J.T., Wu, C.C.: Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 1644–1649 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuo, CH., Lee, JD., Chan, TJ. (2007). A Novel Multi-stage Classifier for Face Recognition. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76390-1_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76389-5

  • Online ISBN: 978-3-540-76390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics