Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discriminative Mean Shift Tracking with Auxiliary Particles

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

Abstract

We present a new approach towards efficient and robust tracking by incorporating the efficiency of the mean shift algorithm with the robustness of the particle filtering. The mean shift tracking algorithm is robust and effective when the representation of a target is sufficiently discriminative, the target does not jump beyond the bandwidth, and no serious distractions exist. In case of sudden motion, the particle filtering outperforms the mean shift algorithm at the expense of using a large particle set. In our approach, the mean shift algorithm is used as long as it provides reasonable performance. Auxiliary particles are introduced to conquer the distraction and sudden motion problems when such threats are detected. Moreover, discriminative features are selected according to the separation of the foreground and background distributions. We demonstrate the performance of our approach by comparing it with other trackers on challenging image sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradski, G.R.: Computer Vision Face Tracking as a Component of a Perceptural User Interface. In: Proc. of the IEEE Workshop Applications of Computer Vision, pp. 214–219 (1998)

    Google Scholar 

  2. Cai, Y., Freitas, N., Little, J.: Robust Visual Tracking for Multiple Targets. In: Little, J. (ed.) Proc. of 6th Europearn Conf. on Computer Vision, pp. 893–908 (2006)

    Google Scholar 

  3. Collins, R.T., Liu, Y.: On-line Selection of Discriminative Tracking Features. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(10), 1631–1643 (2005)

    Article  Google Scholar 

  4. Collins, R.T., Zhou, X., Teh, S.K.: An Open Source Tracking Testbed and Evaluation Web Site. In: PETS 2005. IEEE Int’l Workshop on Performance Evaluation of Tracking and Surveillance (January 2005)

    Google Scholar 

  5. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object Tracking. IEEE Trans. Pattern Analysis Machine Intelligence 25(5), 564–577 (2003)

    Article  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons Press, Chichester (1991)

    MATH  Google Scholar 

  7. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussain Bayesian state estimation. IEEE Proc. 140(2), 107–113 (1993)

    Google Scholar 

  8. Gevers, T., Smeulders, A.W.M.: Color based object recognition. Pattern Recognition 32(3), 453–464 (1999)

    Article  Google Scholar 

  9. Isard, M., Blake, A.: Condensation - conditional density propagation for tracking. Int’l Journal of Computer Vision 29(1), 2–28 (1998)

    Google Scholar 

  10. Isard, M., Blake, A.: ICONDENSATION: unifying low-level and high-level tracking in a stochastic framework. In: Proc. of 5th Europearn Conf. on Computer Vision, vol. I, pp. 893–908 (1998)

    Google Scholar 

  11. Jhne, B., Scharr, H., Krkel, S.: Handbook of Computer Vision and Applications. In: Jhne, B., Hauecker, H., Geiler, P. (eds.), vol. 2, pp. 125–151. Academic Press, London (1999)

    Google Scholar 

  12. Khan, Z., Balch, T., Dellaert, F.: An MCMC-based particle filter for tracking multiple interacting targets. In: Proc. of 5th Europearn Conf. on Computer Vision, vol. I, pp. 893–908 (2004)

    Google Scholar 

  13. Shan, C., Tan, T., Wei, Y.: Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition 40(7), 1958–1970 (2007)

    Article  MATH  Google Scholar 

  14. Sullivan, J., Rittscher, J.: Guiding Random Particles by Deterministic Search. In: Proc. of Eighth IEEE Int’l Conf. on Computer Vision, vol. I, pp. 323–330 (2001)

    Google Scholar 

  15. Swain, M., Ballard, D.: Color Indexing. Int’l Journal of Computer Vision 7, 11–32 (1991)

    Article  Google Scholar 

  16. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int’l Journal of Computer Vision 63(2), 153–161 (2005)

    Article  Google Scholar 

  17. Wang, J., Yagi, Y.: Integrating Shape and Color Features for Adaptive Real-time Object Tracking. In: IEEE Int’l Conf. on Robotics and Biomimetics 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Yagi, Y. (2007). Discriminative Mean Shift Tracking with Auxiliary Particles. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics