Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fragments Based Parametric Tracking

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

Abstract

The paper proposes a parametric approach for color based tracking. The method fragments a multimodal color object into multiple homogeneous, unimodal, fragments. The fragmentation process consists of multi level thresholding of the object color space followed by an assembling. Each homogeneous region is then modelled using a single parametric distribution and the tracking is achieved by fusing the results of the multiple parametric distributions. The advantage of the method lies in tracking complex objects with partial occlusions and various deformations like non-rigid, orientation and scale changes. We evaluate the performance of the proposed approach on standard and challenging real world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: ICCV, vol. 2, pp. 1197–1203 (1999)

    Google Scholar 

  2. Zivkovic, Z., Krose, B.: An em-like algorithm for color-histogram-based object tracking. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 798–803 (2004)

    Google Scholar 

  3. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conf. on Comp. Vis. and Pat. pp. 142–151. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  4. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR 2006. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 798–805. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  5. Leordeanu, M., Collins, R.T., Liu, Y.

    Google Scholar 

  6. Birchfield, S.T., Rangarajan, S.: Spatiograms versus histograms for region-based tracking. In: Proceedings of the Computer Vision and Pattern Recognition, vol. 2, pp. 1158–1163. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  7. Han, B., Davis, L.: Object tracking by adaptive feature extraction. In: In proceeding of International Conference on Image Processing (2004)

    Google Scholar 

  8. Liao, P.S., Chen, T.S., Chung, P.C.: A fast algorithm for multilevel thresholding.

    Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  10. Neal, R.M., Hinton, G.E.: A new view of the EM algorithm that justifies incremental, sparse and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 355–368. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  11. project/IST 2001  37540, E.F.C.: found (2004), at http://homepages.inf.ed.ac.uk/rbf/caviar/

  12. Porikli, F., Tuzel, O.: Covariance tracking using model update based on means on riemannian manifolds. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  13. Birchfield, S.: Elliptical head tracking using intensity gradients and color histograms. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 232, IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prakash, C., Paluri, B., Nalin Pradeep, S., Shah, H. (2007). Fragments Based Parametric Tracking. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics