Nothing Special   »   [go: up one dir, main page]

Skip to main content

On-Line Ensemble SVM for Robust Object Tracking

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

Abstract

In this paper, we present a novel visual object tracking algorithm based on ensemble of linear SVM classifiers. There are two main contributions in this paper. First of all, we propose a simple yet effective way for on-line updating linear SVM classifier, where useful “Key Frames” of target are automatically selected as support vectors. Secondly, we propose an on-line ensemble SVM tracker, which can effectively handle target appearance variation. The proposed algorithm makes better usage of history information, which leads to better discrimination of target and the surrounding background. The proposed algorithm is tested on many video clips including some public available ones. Experimental results show the robustness of our proposed algorithm, especially under large appearance change during tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. PAMI 20(10), 1025–1039 (1998)

    Google Scholar 

  2. Black, M.J., Jepson, A.: EigenTracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision 26(1), 63–84 (1998)

    Article  Google Scholar 

  3. Isard, M., Blake, A.: Condensation-Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  4. Perez, P., et al.: Color-Based Probabilistic Tracking. In: ECCV, pp. 661–675 (2002)

    Google Scholar 

  5. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24, 971–987 (2002)

    Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25(5), 564–577 (2003)

    Google Scholar 

  7. Vacchetti, L., Lepetit, V., Fua, P.: Fusing online and offline information for stable 3D tracking in real-time. In: CVPR 2003, vol. 2, pp. 241–248 (2003)

    Google Scholar 

  8. Nummiaroa, K., Koller-Meierb, E., Gool, L.V.: An Adaptive Color-Based Particle Filter. Image and Vision Computing 99–110 (2003)

    Google Scholar 

  9. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. PAMI 25(10), 1296–1311 (2003)

    Google Scholar 

  10. Avidan, S.: Support Vector Tracking. PAMI 26(8), 1064–1072 (2004)

    Google Scholar 

  11. Matthews, I., Ishikawa, T., Baker, S.: The Template Update Problem. PAMI 26, 810–815 (2004)

    Google Scholar 

  12. Okuma, K., Taleghani, A.: A Boosted Particle Filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 28–39. Springer, Heidelberg (2004)

    Google Scholar 

  13. Ross, D., Lim, J., Yang, M.H.: Probabilistic visual tracking with incremental subspace update. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 470–482. Springer, Heidelberg (2004)

    Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR 2005, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  15. Porikli, F.: Integral histogram: a fast way to extract histograms in Cartesian spaces. In: CVPR 2005, vol. 1, pp. 829–836 (2005)

    Google Scholar 

  16. Avidan, S.: Ensemble tracking. In: Proceedings of CVPR 2005. vol.2, pp. 494–501 (2005)

    Google Scholar 

  17. Grabner, H., Bischof, H.: On-line Boosting and Vision. In: CVPR 2006, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  18. Wu, Y., Huang, T.S.: Color Tracking by Transductive Learning. In: Proceedings of CVPR 2000, vol. 1, pp. 133–138 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tian, M., Zhang, W., Liu, F. (2007). On-Line Ensemble SVM for Robust Object Tracking. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics