Abstract
In this paper, we present a novel visual object tracking algorithm based on ensemble of linear SVM classifiers. There are two main contributions in this paper. First of all, we propose a simple yet effective way for on-line updating linear SVM classifier, where useful “Key Frames” of target are automatically selected as support vectors. Secondly, we propose an on-line ensemble SVM tracker, which can effectively handle target appearance variation. The proposed algorithm makes better usage of history information, which leads to better discrimination of target and the surrounding background. The proposed algorithm is tested on many video clips including some public available ones. Experimental results show the robustness of our proposed algorithm, especially under large appearance change during tracking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. PAMI 20(10), 1025–1039 (1998)
Black, M.J., Jepson, A.: EigenTracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision 26(1), 63–84 (1998)
Isard, M., Blake, A.: Condensation-Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision 29(1), 5–28 (1998)
Perez, P., et al.: Color-Based Probabilistic Tracking. In: ECCV, pp. 661–675 (2002)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24, 971–987 (2002)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25(5), 564–577 (2003)
Vacchetti, L., Lepetit, V., Fua, P.: Fusing online and offline information for stable 3D tracking in real-time. In: CVPR 2003, vol. 2, pp. 241–248 (2003)
Nummiaroa, K., Koller-Meierb, E., Gool, L.V.: An Adaptive Color-Based Particle Filter. Image and Vision Computing 99–110 (2003)
Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. PAMI 25(10), 1296–1311 (2003)
Avidan, S.: Support Vector Tracking. PAMI 26(8), 1064–1072 (2004)
Matthews, I., Ishikawa, T., Baker, S.: The Template Update Problem. PAMI 26, 810–815 (2004)
Okuma, K., Taleghani, A.: A Boosted Particle Filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 28–39. Springer, Heidelberg (2004)
Ross, D., Lim, J., Yang, M.H.: Probabilistic visual tracking with incremental subspace update. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 470–482. Springer, Heidelberg (2004)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR 2005, vol. 1, pp. 886–893 (2005)
Porikli, F.: Integral histogram: a fast way to extract histograms in Cartesian spaces. In: CVPR 2005, vol. 1, pp. 829–836 (2005)
Avidan, S.: Ensemble tracking. In: Proceedings of CVPR 2005. vol.2, pp. 494–501 (2005)
Grabner, H., Bischof, H.: On-line Boosting and Vision. In: CVPR 2006, vol. 1, pp. 260–267 (2006)
Wu, Y., Huang, T.S.: Color Tracking by Transductive Learning. In: Proceedings of CVPR 2000, vol. 1, pp. 133–138 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tian, M., Zhang, W., Liu, F. (2007). On-Line Ensemble SVM for Robust Object Tracking. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-76386-4_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76385-7
Online ISBN: 978-3-540-76386-4
eBook Packages: Computer ScienceComputer Science (R0)