Abstract
The Knuth-Bendix ordering is usually preferred over the lexicographic path ordering in successful implementations of resolution and superposition, but it is incompatible with certain requirements of hierarchic superposition calculi. Moreover, it does not allow non-linear definition equations to be oriented in a natural way. We present an extension of the Knuth-Bendix ordering that makes it possible to overcome these restrictions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, New York (1998)
Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)
Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Applicable Algebra in Engineering, Communication and Computing (AAECC) 5(3/4), 193–212 (1994)
Dick, J., Kalmus, J., Martin, U.: Automating the Knuth-Bendix ordering. Acta Informatica 28(2), 95–119 (1990)
Fernández, M.-L., Godoy, G., Rubio, A.: Recursive path orderings can also be incremental. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 230–245. Springer, Heidelberg (2005)
Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions with Evans equality. Information and Computation 204, 1453–1492 (2006)
Hessenberg, G.: Grundbegriffe der Mengenlehre. Vandenhoeck & Ruprecht, Göttingen (1906)
Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research Report MPI-I-2007-RG1-002, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany (April 2007)
Just, W., Weese, M.: Discovering modern set theory. I: The Basics, Graduate Studies in Mathematics, vol. 8. American Mathematical Society (1996)
Kamin, S., Lévy, J.-J.: Attempts for generalising the recursive path orderings. Manuscript Department of Computer Science, University of Illinois, Urbana-Champaign (1980), available at http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)
Löchner, B.: Things to know when implementing KBO. Journal of Automated Reasoning 36, 289–310 (2006)
Ludwig, M.: Extensions of the Knuth-Bendix ordering with LPO-like properties. Diploma thesis, Universität des Saarlandes, Saarbrücken, Germany (July 2006)
McCune, W.: Otter 3.3 Reference Manual. Argonne National Laboratory, Argonne, IL, USA, Technical Memorandum No. 263 (August 2003)
Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR: FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, Seattle, WA, USA. CEUR Workshop Proceedings, vol. 192, pp. 18–33 (August 2006)
Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Communications 15, 91–110 (2002)
Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topić, D.: SPASS version 2.0. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ludwig, M., Waldmann, U. (2007). An Extension of the Knuth-Bendix Ordering with LPO-Like Properties . In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-75560-9_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75558-6
Online ISBN: 978-3-540-75560-9
eBook Packages: Computer ScienceComputer Science (R0)