Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4790))

Abstract

The Knuth-Bendix ordering is usually preferred over the lexicographic path ordering in successful implementations of resolution and superposition, but it is incompatible with certain requirements of hierarchic superposition calculi. Moreover, it does not allow non-linear definition equations to be oriented in a natural way. We present an extension of the Knuth-Bendix ordering that makes it possible to overcome these restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, New York (1998)

    Google Scholar 

  2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Applicable Algebra in Engineering, Communication and Computing (AAECC) 5(3/4), 193–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dick, J., Kalmus, J., Martin, U.: Automating the Knuth-Bendix ordering. Acta Informatica 28(2), 95–119 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fernández, M.-L., Godoy, G., Rubio, A.: Recursive path orderings can also be incremental. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 230–245. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions with Evans equality. Information and Computation 204, 1453–1492 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hessenberg, G.: Grundbegriffe der Mengenlehre. Vandenhoeck & Ruprecht, Göttingen (1906)

    Google Scholar 

  8. Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research Report MPI-I-2007-RG1-002, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany (April 2007)

    Google Scholar 

  9. Just, W., Weese, M.: Discovering modern set theory. I: The Basics, Graduate Studies in Mathematics, vol. 8. American Mathematical Society (1996)

    Google Scholar 

  10. Kamin, S., Lévy, J.-J.: Attempts for generalising the recursive path orderings. Manuscript Department of Computer Science, University of Illinois, Urbana-Champaign (1980), available at http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html

  11. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)

    Google Scholar 

  12. Löchner, B.: Things to know when implementing KBO. Journal of Automated Reasoning 36, 289–310 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ludwig, M.: Extensions of the Knuth-Bendix ordering with LPO-like properties. Diploma thesis, Universität des Saarlandes, Saarbrücken, Germany (July 2006)

    Google Scholar 

  14. McCune, W.: Otter 3.3 Reference Manual. Argonne National Laboratory, Argonne, IL, USA, Technical Memorandum No. 263 (August 2003)

    Google Scholar 

  15. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR: FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, Seattle, WA, USA. CEUR Workshop Proceedings, vol. 192, pp. 18–33 (August 2006)

    Google Scholar 

  16. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Communications 15, 91–110 (2002)

    MATH  Google Scholar 

  17. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topić, D.: SPASS version 2.0. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nachum Dershowitz Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ludwig, M., Waldmann, U. (2007). An Extension of the Knuth-Bendix Ordering with LPO-Like Properties . In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75560-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75558-6

  • Online ISBN: 978-3-540-75560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics