Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal Algorithms for k-Search with Application in Option Pricing

  • Conference paper
Algorithms – ESA 2007 (ESA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4698))

Included in the following conference series:

Abstract

the k-search problem, a player is searching for the k highest (respectively, lowest) prices in a sequence, which is revealed to her sequentially. At each quotation, the player has to decide immediately whether to accept the price or not. Using the competitive ratio as a performance measure, we give optimal deterministic and randomized algorithms for both the maximization and minimization problems, and discover that the problems behave substantially different in the worst-case. As an application of our results, we use these algorithms to price “lookback options”, a particular class of financial derivatives. We derive bounds for the price of these securities under a no-arbitrage assumption, and compare this to classical option pricing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Comm. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  2. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading online algorithms. Algorithmica 30(1), 101–139 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lippmann, S.A., McCall, J.J.: The economics of job search: a survey. Economic Inquiry XIV, 155–189 (1976)

    Article  Google Scholar 

  4. Lippmann, S.A., McCall, J.J.: The economics of uncertainty: selected topics and probabilistic methods. Handbook of mathematical economics 1, 211–284 (1981)

    Article  Google Scholar 

  5. Rosenfield, D.B., Shapiro, R.D.: Optimal adaptive price search. Journal of Economic Theory 25(1), 1–20 (1981)

    Article  MATH  Google Scholar 

  6. Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary problems and generalizations. SIAM Journal on Disc. Math. 14(1), 1–27 (2001)

    Article  MathSciNet  Google Scholar 

  7. Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online auctions. In: SODA, pp. 630–631 (2005)

    Google Scholar 

  8. Hull, J.C.: Options, Futures, and Other Derivatives. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  9. Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. Journal of Political Economy 81(3), 637–654 (1973)

    Article  Google Scholar 

  10. Shreve, S.E.: Stochastic calculus for finance. II. Springer Finance. Springer-Verlag, New York, Continuous-time models (2004)

    Google Scholar 

  11. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance 1, 223–236 (2001)

    Google Scholar 

  12. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3(1-2), 125–144 (1976)

    Article  MATH  Google Scholar 

  13. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. CRC Press, Boca Raton, USA (2004)

    MATH  Google Scholar 

  14. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. of Fin. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  15. DeMarzo, P., Kremer, I., Mansour, Y.: Online trading algorithms and robust option pricing. In: Proc. of the ACM Symp. on Theory of Comp., STOC, pp. 477–486. ACM Press, New York, USA (2006)

    Google Scholar 

  16. Epstein, D., Wilmott, P.: A new model for interest rates. International Journal of Theoretical and Applied Finance 1(2), 195–226 (1998)

    Article  MATH  Google Scholar 

  17. Korn, R.: Worst-case scenario investment for insurers. Insurance Math. Econom. 36(1), 1–11 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity. In: 18th Symp. on Foundations of Comp. Sci., pp. 222–227. IEEE Computer Society Press, Los Alamitos (1977)

    Google Scholar 

  19. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Goldman, M.B., Sosin, H.B., Gatto, M.A.: Path dependent options: buy at the low, sell at the high. The Journal of Finance 34(5), 1111–1127 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Michael Hoffmann Emo Welzl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorenz, J., Panagiotou, K., Steger, A. (2007). Optimal Algorithms for k-Search with Application in Option Pricing. In: Arge, L., Hoffmann, M., Welzl, E. (eds) Algorithms – ESA 2007. ESA 2007. Lecture Notes in Computer Science, vol 4698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75520-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75520-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75519-7

  • Online ISBN: 978-3-540-75520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics