Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolutionary Fuzzy Modelling for Drug Resistant HIV-1 Treatment Optimization

  • Chapter
Engineering Evolutionary Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 82))

Summary

Fuzzy relational models for genotypic drug resistance analysis in Human Immunodeficiency Virus type 1 (HIV-1) are discussed. Fuzzy logic is introduced to model high-level medical language, viral and pharmacological dynamics. In-vitro experiments of genotype/phenotype pairs and in-vivo clinical data bases are the base for the knowledge mining. Fuzzy evolutionary algorithms and fuzzy evaluation functions are proposed to mine resistance rules, to improve computational performances and to select relevant features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts EHL, Eiben AE, van Hee KM (1989) A general theory of genetic algorithms. Computing Science Notes. Eindhoven University of Technology, Eindhoven

    Google Scholar 

  2. Abraham A (2004) Meta learning evolutionary artificial neural networks. Neurocomputing 56:1–38

    Article  Google Scholar 

  3. Angeline PJ, Saunders GM, Pollack JB (1994) An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans Neural Netw 5:54–65

    Article  Google Scholar 

  4. Azzini A, Cristaldi L, Lazzaroni M, Monti A, Ponci F, Tettamanzi AGB (2006) Incipient fault diagnosis in electrical drives by tuned neural networks. In: Proceedings of the IEEE instrumentation and measurement technology conference, IMTC 2006, Sorrento, Italy. IEEE, April, 24–27

    Google Scholar 

  5. Azzini A, Lazzaroni M, Tettamanzi AGB (2005) A neuro-genetic approach to neural network design. In: Sartori F, Manzoni S, Palmonari M (eds) AI*IA 2005 workshop on evolutionary computation. AI*IA, Italian Association for Artificial Intelligence, September 20, 2005

    Google Scholar 

  6. Azzini A, Tettamanzi AGB (2006) A neural evolutionary approach to financial modeling. In: Sigevo (ed) Proceedings of the genetic and evolutionary computation conference, GECCO 2006, Seattle, WA, July 8–12, 2006

    Google Scholar 

  7. Azzini A, Tettamanzi AGB (2006) A neural evolutionary classification method for brain-wave analysis. In: Proceedings of the European workshop on evolutionary computation in image analysis and signal processing, EvoIASP 2006, April 2006

    Google Scholar 

  8. Baeck T, Fogel DB, Michalewicz Z (2000) Evolutionary computation 1–2. Institute of Physics Publishing, Bristol and Philadelphia, Dirac House, Temple Back, Bristol, UK

    Google Scholar 

  9. Bersini H, Seront G (1992) In search of a good crossover between evolution and optimization. Parallel problem solving from Nature 2:479–488

    Google Scholar 

  10. Beverina F, Palmas G, Silvoni S, Piccione F, Giove S (2003) User adaptive bcis: Ssvep and p300 based interfaces. PsychNology J 1(4):331–354

    Google Scholar 

  11. Castillo PA, Carpio J, Merelo JJ, Prieto A, Rivas V, Romero G (2000) Evolving multilayer perceptrons. Neural Process Lett 12(2):115–127

    Article  MATH  Google Scholar 

  12. Castillo PA, Gonzlez J, Merelo JJ, Rivas V, Romero G, Prieto A (1998) Sa-prop: optimization of multilayer perceptron parameters using simulated annealing. Neural Processing Lett

    Google Scholar 

  13. Chalmers DJ (1990) The evolution of learning: an experiment in genetic connectionism. In: Touretzky DS, Elman JL, Hinton GE (eds) Connectionist models: proceedings of the 1990 summer school. Morgan Kaufmann, San Mateo, CA, pp 81–90

    Google Scholar 

  14. Cristaldi L, Lazzaroni M, Monti A, Ponci F (2004) A neurofuzzy application for ac motor drives monitoring system. IEEE Trans Instrum Measurement 53(4):1020–1027

    Article  Google Scholar 

  15. Daubeschies I (1992) Ten lectures on wavelet Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania

    Google Scholar 

  16. Davis L (1989) Adapting operator probabilities in genetic algorithms. In: Schaffer J (ed) Proceedings of the third international conference on genetic algorithms. Morgan Kaufmann, San Mateo, CA, pp 61–69

    Google Scholar 

  17. Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a p300-based brain–computer interface. IEEE Trans Rehabil Eng 8(2):174–179

    Article  Google Scholar 

  18. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  19. Filho EFM, Carfalhode A (1997) Evolutionary design of mlp neural network architectures. In: IEEE Proceedings of the fourth Brazilian symposium on neural networks, pp 58–65

    Google Scholar 

  20. Fogel LG, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  21. Goldberg DE (1992) Genetic algorithms in search optimization & machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  22. Hancock PJB (1992) Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification. In: Whitley LD, Schaffer JD (eds) Proceedings of the third international workshop on combinations genetic algorithms neural networks, 1992, pp 108–122

    Google Scholar 

  23. Harp S, Samad T, Guha A (1991) Towards the genetic syntesis of neural networks. Fourth international conference on genetic alglorithms, pp 360–369

    Google Scholar 

  24. Harris L (2003) Trading and exchanges: market microstructure for practitioners. Oxford University Press, Oxford

    Google Scholar 

  25. Holland JH (1975) Adaption in natural and artificial systems. The University of Michigan Press, Ann Arbor, MI

    MATH  Google Scholar 

  26. De Jong KA (1993) Evol Comput. MIT, Cambridge, MA

    Google Scholar 

  27. Keesing R, Stork DG (1991) Evolution and learning in neural networks: the number and distribution of learning trials affect the rate of evolution. Adv Neural Inf Process Syst 3:805–810

    Google Scholar 

  28. Knerr S, Personnaz L, Dreyfus G (1992) Handwritten digit recognition by neural networks with single-layer training. IEEE Trans Neural Netw 3:962–968

    Article  Google Scholar 

  29. Koza JR (1994) Genetic programming. The MIT, Cambridge, MA

    MATH  Google Scholar 

  30. Leung EHF, Lam HF, Ling SH, Tam PKS (2003) Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans Neural Netw 14(1):54–65

    Article  Google Scholar 

  31. Mallat S (1999) A wavelet tour of signal processing. Academic, San Diego, CA

    MATH  Google Scholar 

  32. Maniezzo V (1993) Granularity evolution. In: Proceedings of the fifth international conference on genetic algorithm and their applications, p 644

    Google Scholar 

  33. Maniezzo V (1993) Searching among search spaces: hastening the genetic evolution of feedforward neural networks. In: International conference on neural networks and genetic algorithms, GA-ANN’93, pp 635–642

    Google Scholar 

  34. Maniezzo V (1994) Genetic evolution fo the topology and weight distribution of neural networks. IEEE Trans Neural Netw 5(1):39–53

    Article  Google Scholar 

  35. Merelo JJ, Patn M, Canas A, Prieto A, Morn F (1993) Optimization of a competitive learning neural network by genetic algorithms. IWANN93. Lect Notes Comp Sci 686:185–192

    Google Scholar 

  36. Michalevicz Z (1996) Genetic algorithms + data structures = evolution program. Springer, Berlin Heidelberg New York

    Google Scholar 

  37. Miller GF, Todd PM, Hegde SU (1989) Designing neural networks using genetic algorithms. In: Schaffer JD (ed) Proceedings of the third international conference on genetic algorithms, pp 379–384

    Google Scholar 

  38. Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533

    Article  Google Scholar 

  39. Montana D, Davis L (1989) Training feedforward neural networks using genetic algorithms. In: Proceedings of the eleventh international conference on artificial intelligence. Morgan Kaufmann, Los Altos, CA, pp 762–767

    Google Scholar 

  40. Mordaunt P, Zalzala AMS (2002) Towards an evolutionary neural network for gait analysis. In: Proceedings of the 2002 congress on evolutionary computation, vol 2. pp 1238–1243

    Google Scholar 

  41. Moze MC, Smolensky P (1989) Using relevance to reduce network size automatically. Connect Sci 1(1):3–16

    Article  Google Scholar 

  42. Muhlenbein H, Schlierkamp-Voosen D (1993) The science of breeding and its application to the breeder genetic algorithm (bga). Evol Comput 1(4):335–360

    Article  Google Scholar 

  43. Giorgio Palmas (2005) Personal communication, November 2005

    Google Scholar 

  44. Palmes PP, Hayasaka T, Usui S (2005) Mutation-based genetic neural network. IEEE Trans Neural Netw 16(3):587–600

    Article  Google Scholar 

  45. Pedrajas NG, Martinez CH, Prez JM (2003) Covnet: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans Neural Netw 14(3):575–596

    Article  Google Scholar 

  46. Rechenberg I (1973) Evolutionsstrategie: optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart

    Google Scholar 

  47. Redmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning. In: Proceedings of the international conference on neural networks, pp 586–591

    Google Scholar 

  48. Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101

    Article  Google Scholar 

  49. Rumelhart DE, McClelland JL, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  50. Rumelhart DE, Hinton G, Williams R (1986) Parallel distributed processing. MIT, Cambridge, MA

    Google Scholar 

  51. Schaffer JD, Whitley LD, Eshelman LJ (1992) Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: Whitley LD, Schaffer JD (eds) Proceedings of the third international workshop on combinations genetic algorithms neural networks, pp 1–37

    Google Scholar 

  52. Sidney Burrus C, Gopinath RA, Guo H (1998) Introduction to wavelets and wavelet transorms – a primer. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  53. Stanley K, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127

    Article  Google Scholar 

  54. Weymaere N, Martens J (1994) On the initialization and optimization of multiplayer perceptrons. IEEE Trans Neural Netw 5:738–751

    Article  Google Scholar 

  55. Whitley D, Hanson T (1989) Optimizing neural networks using faster, more accurate genetic search. In: Schaffer JD (ed) Proceedings of the third international conference on genetic algorithms, pp 391–396

    Google Scholar 

  56. Whitley D, Starkweather T, Bogart C (1993) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14:347–361

    Article  Google Scholar 

  57. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson JC, Vaughan TM (2000) Brain computer interface technology: a review of the first international meeting. IEEE Trans Rehab Eng 8(2):164–173

    Article  Google Scholar 

  58. Yang B, Su XH, Wang YD (2002) Bp neural network optimization based on an improved genetic algorithm. In: Proceedings of the IEEE first international conference on machine learning and cybernetics, November 2002, pp 64–68

    Google Scholar 

  59. Yao X (1999) Evolving artificial neural networks. In: Proceedings on IEEE, pp 1423–1447

    Google Scholar 

  60. Yao X, Xu Y (2006) Recent advances in evolutionary computation. Comput Sci Technol 21(1):1–18

    Article  MathSciNet  Google Scholar 

  61. Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8(3):694–713

    Article  MathSciNet  Google Scholar 

  62. Yao X, Liu Y (1998) Towards designing artificial neural networks by evolution. Appl Math Comput 91(1):83–90

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prosperi, M., Ulivi, G. (2008). Evolutionary Fuzzy Modelling for Drug Resistant HIV-1 Treatment Optimization. In: Abraham, A., Grosan, C., Pedrycz, W. (eds) Engineering Evolutionary Intelligent Systems. Studies in Computational Intelligence, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75396-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75396-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75395-7

  • Online ISBN: 978-3-540-75396-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics