Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computations in Modules over Commutative Domains

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4770))

Included in the following conference series:

Abstract

This paper is a review of results on computational methods of linear algebra over commutative domains. Methods for the following problems are examined: solution of systems of linear equations, computation of determinants, computation of adjoint and inverse matrices, computation of the characteristic polynomial of a matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akritas, A.: Elements of Computer Algebra with Applications. John Wiley Interscience, New York (1989)

    MATH  Google Scholar 

  2. Akritas, A.G., Akritas, E.K., Malaschonok, G.I: Various proofs of Sylvester’s (determinant) identity. Mathematics and Computations in Simulation 42, 585–593 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Akritas, A.G., Malaschonok, G.I.: Computation of the Adjoint Matrix. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 486–489. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Abdeljaoued, J.: Berkowitz Algorithm, Maple and computing the characteristic polynomial in an arbitrary commutative ring. Computer Algebra MapleTech 4(3), Birkhauser Boston (1997)

    Google Scholar 

  5. Abdeljaoued, J., Malaschonok, G.I.: Efficient Algorithms for Computing the Characteristic Polynomial in a Domain. Journal of Pure and Applied Algebra 156(2-3), 127–145 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bareiss, E.H.: Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Math. Comp. 22(103), 565–578 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chistov, A.L.: Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 147–150. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dodgson, C.L.: Condensation of determinants, being a new and brief method for computing their arithmetic values. Proc. Royal Soc. Lond. A15, 150–155 (1866)

    Article  Google Scholar 

  10. Kaltofen, E.: On Computing Determinants of Matrices Without Divisions. In: ISSAC 1992. Proc. Internat. Symp. Symbolic Algebraic Comput, pp. 342–349. ACM Press, New York (1992)

    Chapter  Google Scholar 

  11. Kaltofen, E., Villard, G.: On the complexity of computing determinants. In: ASCM 2001. Proc. Fifth Asian Symposium on Computer Mathematics(extended abstract), pp. 13–27 (2001)

    Google Scholar 

  12. Malashonok, G.I.: Solution of a system of linear equations in an integral domain. USSR Journal of computational Mathematics and Mathematical Physics 23(6), 1497–1500 (1983)

    MathSciNet  Google Scholar 

  13. Malashonok, G.I.: On the solution of a linear equation system over commutative rung. Math. Notes of the Acad. Sci. USSR 42(4), 543–548 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Malashonok, G.I.: A new solution method for linear equation systems over commutative rung. In: International Algebraic Conference, Theses on the ring theory, algebras and modules, Novosibirsk, p. 82 (August 21-26, 1989)

    Google Scholar 

  15. Malashonok, G.I.: Algorithms for the solution of systems of linear equations in commutative rings; Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math., Birkhauser Boston, Boston, 94, 289–298 (1991)

    Google Scholar 

  16. Malashonok, G.I.: Argorithms for Computing Determinants in commutative rings; Diskretnaya Matematika 7(4), 68–76 (1995) transl. in: Discrete Math. Appl. 5(6), 557–566 (1996)

    Google Scholar 

  17. Malaschonok, G.I.: On the solution of systems of linear equations; Computational Commutative Algebra, COCOA-IV, Abstracts, Genova, 32 (May 29-June 2, 1995)

    Google Scholar 

  18. Malaschonok, G.I.: Recursive Method for the Solution of Systems of Linear Equations; Computational Mathematics. In: Proc. of the 15th IMACS World Congress, I, Berlin, August 1997, Wissenschaft & Technik Verlag, Berlin, pp. 475–480 (1997)

    Google Scholar 

  19. Malaschonok, G.I.: A Computation of the Characteristic Polynomial of an Endomorphism of a Free Module; Zap. Nauchnyh Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 258 (1999). Teor. Predst. Din. Sist. Komb. i Algoritm. Metody 4, 101–114 (1999)

    Google Scholar 

  20. Malaschonok, G.I.: Effective Matrix Methods in Commutative Domains; Formal Power Series and Algebraic Combinatorics, pp. 506–517. Springer, Heidelberg (2000)

    Google Scholar 

  21. Strassen, V.: Gaussian Elimination is not optimal; Numerische Mathematik 13, 354–356 (1969)

    Google Scholar 

  22. Sasaki, T., Murao, H.: Efficient Gaussian elimination method for symbolic determinants and linear systems. A.C.M. Trans. Math. Software 8(4), 277–289 (1968)

    MathSciNet  Google Scholar 

  23. Waugh, F.V., Dwyer, P.S.: Compact computation of the inverse of a matrix. Annals of Mathemaical Statistic 16, 259–271 (1945)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor G. Ganzha Ernst W. Mayr Evgenii V. Vorozhtsov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akritas, A.G., Malaschonok, G.I. (2007). Computations in Modules over Commutative Domains. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2007. Lecture Notes in Computer Science, vol 4770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75187-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75187-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75186-1

  • Online ISBN: 978-3-540-75187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics