Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structural Image Analysis Based on Ontological Models

  • Conference paper
Computer Recognition Systems 2

Part of the book series: Advances in Soft Computing ((AINSC,volume 45))

Abstract

A concept of structural image analysis and interpretation based on superrelations and on ontological models is presented. The system of image interpretation should contain the structural analysis (SA), ontological models (OM) and semantic relationships (SR) modules. The role of modules is described. The proposed approach is illustrated by an example of cardiac USG images interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ledley R.S., Rotolo L.S., Golab T.J. et al (1965) FID AC: film input to digital automatic computer and associated syntax-directed pattern recognition programming system. In“Optical and Electro-Optical Information Processing” (Tippet et al eds.), Chapt. 33, MIT Press, Cambridge Mass.,. 591–614.

    Google Scholar 

  2. Shaw A.C. (1968) The formal description and parsing of pictures. Rep. SLAC-84, Stanford Linear Accelerator Center, Stanford Univ., Stanford Calif.

    Google Scholar 

  3. Pfaltz J.L., Rosenfeld A. (1969) WEB grammars. Proc. Int. Joint Conf. Artificial Intelligence 1st. Washington D.C., 609–619.

    Google Scholar 

  4. Feder J. (1971) Plex languages. Information Sci. vol. 3, 225–241.

    Article  MathSciNet  Google Scholar 

  5. Fu K. S. (1974) Syntactic methods in pattern recognition. Academic Press, New York.

    MATH  Google Scholar 

  6. Flasinski M. (1988) Parsing of edNLC — graph grammar for scene analysis. Patt. Recognition, vol. 21. nr 6.

    Google Scholar 

  7. Jakubowski R. (1985) Extraction of shape features for syntactic recognition of mechanical parts. IEEE Trans. Syst. Man Cybern., SMC-15, vol. 5.

    Google Scholar 

  8. Grabska E., Hliniak G. (1992) Design space and graph grammars. Machine Graphics and Vision, vol. 1 nos 1–2, 25–34.

    Google Scholar 

  9. Ogiela M.R., Tadeusiewicz R., Ogiela L. (2005) Intelligent semantic information retrieval. In Medical Pattern Cognitive Analysis. Computational Science and its Applications — ICCSA, 852–857.

    Google Scholar 

  10. Kulikowski J.L. (1970) Some problems of structural analysis of composite patterns (in Polish). Arch. Automatyki I Telemechaniki, vol. XV, no 3.

    Google Scholar 

  11. Kulikowski J. (1971) Algebraic methods in pattern recognition. CISM, Udine, Courses and Lectures No 85. Springer Verlag, Wien.

    Google Scholar 

  12. Kulikowski J.L. (2002) Relational approach to structural analysis of images. Machine Graphics and Vision, vol. 1, nos 1–2, 299–309

    Google Scholar 

  13. Kulikowski J.L. (2004) Description of irregular composite objects by hyperrelations. In Computer Vision and Graphics. Int. Conf. ICCVG 2004, Warsaw (K. Wojciechowski et al eds.). Springer, 141–146.

    Google Scholar 

  14. Kulikowski J.L. (2002) From pattern recognition to image interpretation. Biocybernetic and Biomedical Engineering vol. 22, nos 2–3, 177–197.

    Google Scholar 

  15. Tadeusiewicz R., Ogiela M.R. (2004) Medical image understanding technology. Springer Verlag, Berlin.

    MATH  Google Scholar 

  16. Kulikowski J.L. (2005) The Role of Ontological Models in Pattern Recognition. In Computer Recognition Systems. Proc. of the 4th International Conference on Computer Recognition Systems CORES’05 (M. Kurzynski et al eds), Springer; 43–52.

    Google Scholar 

  17. Kulikowski J.L. (2007) Image Understanding as a Step to Image Utility Assessment. IEEE International Workshop on Imaging Systems and Techiques — IST 2007, Krakow, May 4–5, 2000. CD: l-4244-0965-9/©2007 IEEE.

    Google Scholar 

  18. Kulikowski J.L., Przytulska M., Wierzbicka D. (2001) Investigation of irregular shapes’s time-variations in the left cardiac ventricle evolution. IFMBE Proc, IX Mediterranean Conf. on Medical and Biological Eng. and Computing, MEDICON, Pula, Croatia, 12–15 June 2001, Part I, 531–533.

    Google Scholar 

  19. Zadeh L.A. (1965) Fuzzy sets. Information and Control, vol. 8, no 3, 338–353.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulikowski, J.L. (2007). Structural Image Analysis Based on Ontological Models. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds) Computer Recognition Systems 2. Advances in Soft Computing, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75175-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75175-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75174-8

  • Online ISBN: 978-3-540-75175-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics