Abstract
This paper presents an efficient scheme maintaining a separator decomposition representation in dynamic trees using asymptotically optimal labels. In order to maintain the short labels, the scheme uses relatively low message complexity. In particular, if the initial dynamic tree contains just the root, then the scheme incurs an O(log3 n) amortized message complexity per topology change, where n is the current number of nodes in the tree. As a separator decomposition is a fundamental decomposition of trees used extensively as a component in many static graph algorithms, our dynamic scheme for separator decomposition may be used for constructing dynamic versions to these algorithms.
The paper then shows how to use our dynamic separator decomposition to construct rather efficient labeling schemes on dynamic trees, using the same message complexity as our dynamic separator scheme. Specifically, we construct efficient routing schemes on dynamic trees, for both the designer and the adversary port models, which maintain optimal labels, up to a multiplicative factor of O(loglogn). In addition, it is shown how to use our dynamic separator decomposition scheme to construct dynamic labeling schemes supporting the ancestry and NCA relations using asymptotically optimal labels, as well as to extend a known result on dynamic distance labeling schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact Labeling Scheme for Ancestor Queries. SIAM J. Computing 35(6), 1295–1309 (2006)
Abiteboul, S., Kaplan, H., Milo, T.: Compact Labeling Schemes for Ancestor Queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2001)
Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local Management of a Global Resource in a Communication. J. ACM 43, 1–19 (1996)
Afek, Y., Gafni, E., Ricklin, M.: Upper and Lower Bounds for Routing Schemes in Dynamic Networks. In: Proc. 30th Symp. on Foundations of Computer Science, pp. 370–375 (1989)
Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A Survey and a new Distributed Algorithm. Theory of Computing Systems 37, 441–456 (2004)
Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proc. 43rd IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos (2002)
Cole, R., Hariharan, R.: Dynamic LCA Queries on Trees. SIAM J. Computing 34(4), 894–923 (2005)
Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic Graph Algorithms. In: Atallah, M.J. (ed.) Algorithms and Theoretical Computing Handbook, ch. 8, CRC Press, Boca Raton, USA (1999)
Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)
Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proc. 19th Int. Symp. on Theoretical Aspects of Computer Science, pp. 65–75 (March 2002)
Feigenbaum, J., Kannan, S.: Dynamic Graph Algorithms. In: Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton, USA (2000)
Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: 9th European Symp. on Algorithms, pp. 476–488 (August 2001)
Kannan, S., Naor, M., Rudich, S.: Implicit Representation of Graphs. SIAM J. on Descrete Math. 5, 596–603 (1992)
Korman, A.: General Compact Labeling Schemes for Dynamic Trees. In: Proc. 19th Symp. on Distributed Computing (September 2005)
Korman, A.: Labeling Schemes for Vertex Connectivity. In: ICALP. Proc. 34th Int. Colloq. on Automata, Languages and Prog. (July 2007)
Korman, A., Kutten, S.: Controller and Estimator for Dynamic Networks. In: Proc. 26th ACM Symp. on Principles of Distributed Computing, ACM Press, New York (2007)
Korman, A., Peleg, D.: Labeling Schemes for Weighted Dynamic Trees. In: Proc. 30th Int. Colloq. on Automata, Languages & Prog. (July 2003)
Korman, A., Peleg, D., Rodeh, Y.: Labeling Schemes for Dynamic Tree Networks. Theory of Computing Systems, Special Issue of STACS 2002 papers 37(1), 49–75 (2004)
Peleg, D.: Informative Labeling Schemes for Graphs. Theoretical Computer Science, Special Issue of MFCS 2000 papers 340, 577–593 (2005)
Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach. Morgan Kaufmann, San Francisco (2007)
Schieber, B., Vishkin, U.: On finding Lowest Common Ancestors: Simplification and Parallelization. SIAM J. Computing 17(6), 1253–1262 (1988)
Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. J. Computer & System Sciences 26(1), 362–391 (1983)
Tanenbaum, A.S.: Computer Networks. Prentice-Hall, Englewood Cliffs (2003)
Thorup, M., Zwick, U.: Compact Routing Schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, pp. 1–10. ACM Press, New York (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korman, A., Peleg, D. (2007). Compact Separator Decompositions in Dynamic Trees and Applications to Labeling Schemes. In: Pelc, A. (eds) Distributed Computing. DISC 2007. Lecture Notes in Computer Science, vol 4731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75142-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-75142-7_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75141-0
Online ISBN: 978-3-540-75142-7
eBook Packages: Computer ScienceComputer Science (R0)