Nothing Special   »   [go: up one dir, main page]

Skip to main content

Compact Separator Decompositions in Dynamic Trees and Applications to Labeling Schemes

  • Conference paper
Distributed Computing (DISC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4731))

Included in the following conference series:

Abstract

This paper presents an efficient scheme maintaining a separator decomposition representation in dynamic trees using asymptotically optimal labels. In order to maintain the short labels, the scheme uses relatively low message complexity. In particular, if the initial dynamic tree contains just the root, then the scheme incurs an O(log3 n) amortized message complexity per topology change, where n is the current number of nodes in the tree. As a separator decomposition is a fundamental decomposition of trees used extensively as a component in many static graph algorithms, our dynamic scheme for separator decomposition may be used for constructing dynamic versions to these algorithms.

The paper then shows how to use our dynamic separator decomposition to construct rather efficient labeling schemes on dynamic trees, using the same message complexity as our dynamic separator scheme. Specifically, we construct efficient routing schemes on dynamic trees, for both the designer and the adversary port models, which maintain optimal labels, up to a multiplicative factor of O(loglogn). In addition, it is shown how to use our dynamic separator decomposition scheme to construct dynamic labeling schemes supporting the ancestry and NCA relations using asymptotically optimal labels, as well as to extend a known result on dynamic distance labeling schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact Labeling Scheme for Ancestor Queries. SIAM J. Computing 35(6), 1295–1309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abiteboul, S., Kaplan, H., Milo, T.: Compact Labeling Schemes for Ancestor Queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2001)

    Google Scholar 

  3. Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local Management of a Global Resource in a Communication. J. ACM 43, 1–19 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Afek, Y., Gafni, E., Ricklin, M.: Upper and Lower Bounds for Routing Schemes in Dynamic Networks. In: Proc. 30th Symp. on Foundations of Computer Science, pp. 370–375 (1989)

    Google Scholar 

  5. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A Survey and a new Distributed Algorithm. Theory of Computing Systems 37, 441–456 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proc. 43rd IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  7. Cole, R., Hariharan, R.: Dynamic LCA Queries on Trees. SIAM J. Computing 34(4), 894–923 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic Graph Algorithms. In: Atallah, M.J. (ed.) Algorithms and Theoretical Computing Handbook, ch. 8, CRC Press, Boca Raton, USA (1999)

    Google Scholar 

  9. Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proc. 19th Int. Symp. on Theoretical Aspects of Computer Science, pp. 65–75 (March 2002)

    Google Scholar 

  11. Feigenbaum, J., Kannan, S.: Dynamic Graph Algorithms. In: Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton, USA (2000)

    Google Scholar 

  12. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: 9th European Symp. on Algorithms, pp. 476–488 (August 2001)

    Google Scholar 

  13. Kannan, S., Naor, M., Rudich, S.: Implicit Representation of Graphs. SIAM J. on Descrete Math. 5, 596–603 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Korman, A.: General Compact Labeling Schemes for Dynamic Trees. In: Proc. 19th Symp. on Distributed Computing (September 2005)

    Google Scholar 

  15. Korman, A.: Labeling Schemes for Vertex Connectivity. In: ICALP. Proc. 34th Int. Colloq. on Automata, Languages and Prog. (July 2007)

    Google Scholar 

  16. Korman, A., Kutten, S.: Controller and Estimator for Dynamic Networks. In: Proc. 26th ACM Symp. on Principles of Distributed Computing, ACM Press, New York (2007)

    Google Scholar 

  17. Korman, A., Peleg, D.: Labeling Schemes for Weighted Dynamic Trees. In: Proc. 30th Int. Colloq. on Automata, Languages & Prog. (July 2003)

    Google Scholar 

  18. Korman, A., Peleg, D., Rodeh, Y.: Labeling Schemes for Dynamic Tree Networks. Theory of Computing Systems, Special Issue of STACS 2002 papers 37(1), 49–75 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Peleg, D.: Informative Labeling Schemes for Graphs. Theoretical Computer Science, Special Issue of MFCS 2000 papers 340, 577–593 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach. Morgan Kaufmann, San Francisco (2007)

    Google Scholar 

  21. Schieber, B., Vishkin, U.: On finding Lowest Common Ancestors: Simplification and Parallelization. SIAM J. Computing 17(6), 1253–1262 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. J. Computer & System Sciences 26(1), 362–391 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tanenbaum, A.S.: Computer Networks. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  24. Thorup, M., Zwick, U.: Compact Routing Schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, pp. 1–10. ACM Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrzej Pelc

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korman, A., Peleg, D. (2007). Compact Separator Decompositions in Dynamic Trees and Applications to Labeling Schemes. In: Pelc, A. (eds) Distributed Computing. DISC 2007. Lecture Notes in Computer Science, vol 4731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75142-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75142-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75141-0

  • Online ISBN: 978-3-540-75142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics