Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploiting Past and Future: Pruning by Inconsistent Partial State Dominance

  • Conference paper
Principles and Practice of Constraint Programming – CP 2007 (CP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4741))

Abstract

It has recently been shown, for the Constraint Satisfaction Problem (CSP), that the state associated with a node of the search tree built by a backtracking algorithm can be exploited, using a transposition table, to prevent the exploration of similar nodes. This technique is commonly used in game search algorithms, heuristic search or planning. Its application is made possible in CSP by computing a partial state – a set of meaningful variables and their associated domains – preserving relevant information. We go further in this paper by providing two new powerful operators dedicated to the extraction of inconsistent partial states. The first one eliminates any variable whose current domain can be deduced from the partial state, and the second one extracts the variables involved in the inconsistency proof of the subtree rooted by the current node. Interestingly, we show these two operators can be safely combined, and that the pruning capabilities of the recorded partial states can be improved by a dominance detection approach (using lazy data structures).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving over-determined constraint satisfaction problems. In: Proceedings of IJCAI 1993, pp. 276–281 (1993)

    Google Scholar 

  2. Bessière, C.: Arc-consistency in dynamic constraint satisfaction problems. In: Proceedings of AAAI 1991, pp. 221–226 (1991)

    Google Scholar 

  3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

    Google Scholar 

  4. Boutaleb, K., Jégou, P., Terrioux, C.: (no)good recording and robdds for solving structured (v)csps. In: Proceedings of ICTAI 2006, pp. 297–304 (2006)

    Google Scholar 

  5. de Siqueira, J.L., Puget, J.F.: Explanation-based generalisation of failures. In: Proceedings of ECAI 1988, pp. 339–344 (1988)

    Google Scholar 

  6. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial Intelligence Research 14, 205–230 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems. Artificial Intelligence 136, 147–188 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eén, N., Sorensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)

    Google Scholar 

  9. Fahle, T., Schamberger, S., Sellman, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Frost, D., Dechter, R.: Dead-end driven learning. In: Proceedings of AAAI 1994, pp. 294–300 (1994)

    Google Scholar 

  12. Ginsberg, M.: Dynamic backtracking. Artificial Intelligence 1, 25–46 (1993)

    MATH  Google Scholar 

  13. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: Proceedings of ECAI 2006, pp. 113–117 (2006)

    Google Scholar 

  14. Junker, U.: QuickXplain: preferred explanations and relaxations for over-constrained problems. In: Proceedings of AAAI 2004, pp. 167–172 (2004)

    Google Scholar 

  15. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of AAAI 2005, pp. 390–396 (2005)

    Google Scholar 

  16. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods from restarts. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 1, 147–167 (2007)

    Google Scholar 

  17. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Transposition Tables for Constraint Satisfaction. In: Proceedings of AAAI 2007, pp. 243–248 (2007)

    Google Scholar 

  18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of DAC 2001, pp. 530–535 (2001)

    Google Scholar 

  19. Prosser, P.: Hybrid algorithms for the constraint satisfaction problems. Computational Intelligence 9(3), 268–299 (1993)

    Article  Google Scholar 

  20. Puget, J.F.: Symmetry breaking revisited. Constraints 10(1), 23–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sellmann, M., Van Hentenryck, P.: Structural symmetry breaking. In: Proceedings of IJCAI 2005, pp. 298–303 (2005)

    Google Scholar 

  22. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Proceedings of ICCAD 2001, pp. 279–285 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Bessière

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lecoutre, C., Sais, L., Tabary, S., Vidal, V. (2007). Exploiting Past and Future: Pruning by Inconsistent Partial State Dominance. In: Bessière, C. (eds) Principles and Practice of Constraint Programming – CP 2007. CP 2007. Lecture Notes in Computer Science, vol 4741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74970-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74970-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74969-1

  • Online ISBN: 978-3-540-74970-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics