Summary
We propose a model of a middleware system enabling personalized web search for users with different preferences. We integrate both inductive and deductive tasks to find user preferences and consequently best objects. The model is based on modeling preferences by fuzzy sets and fuzzy logic. We present the model- theoretic semantic for fuzzy description logic f-EL which is the motivation of creating a model for fuzzy RDF. Our model was experimentally implemented and integration was tested
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Kuesters, R., Wolter, F.: Extensions to Description Logics. In: Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P. F., Description Logic Handbook, Cambridge University Press (2003), 219–261
Bednárek, D., Obdržálek, D., Yaghob, J., Zavoral, F.: Data Integration Using DataPile Structure. In: Advances in Databases and Information Systems, Springer Verlag (2005), ISBN 3-540-42555-1, 178–188
3. Bratko, I., Suc, D.: Learning qualitative models. AI Magazine 24 (2003) 107–119
Ciglan, M., Babik, M., Laclavík, M., Budinská, I., Hluchý, L.: Corporate memory: A framework for supporting tools for acquisition, organization and maintenance of information and knowledge. In: ISIM’06, Czech Republic (2006) 185–192
5. Fagin, R.: Combining fuzzy information from multiple systems, In: J. Comput. System Sci. (1999) 58:83–99
Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: Proc. 20th ACM Symposium on Principles of Database Systems (2001), 102–113
Gursky, P.: Towards better semantics in the multifeature querying. In Proceedings of Dateso 2006, ISBN 80-248-1025-5, (2006), 63–73
Horváth, T., Vojtáš, P.: Induction of Fuzzy and Annotated Logic Programs. In: ILP 2006, LNAI 4455 Springer-Verlag (2007) 260–274
Horváth, T., Vojtáš, P.: Ordinal Classification with Monotonicity Constraints. In: ICDM 2006, Leipzig, Germany. LNAI 4065 Springer-Verlag (2006), 217–225.
Naito, E., Ozawa, J., Hayashi, I., Wakami, N.: A proposal of a fuzzy connective with learning function and query networks for fuzzy retrieval systems. In: Fuzziness in database management systems. P. Bosc and J. Kacprzyk (eds.), Physica Verlag (1995), 345–364
NAZOU. Tools for acquisition, organization and maintenance of knowledge in an environment of heterogeneous information resources. ⟨http://nazou.fiit.stuba.sk⟩
Spring Framework. System for assembling components via configuration files. ⟨http://www.springframework.org⟩.
Srinavasan, A.: The Aleph Manual. Technical Report, Comp. Lab., Oxford University
Vojtáš, P.: Fuzzy logic aggregation for Semantic Web search for the best (top-k) answers. In: Fuzzy logic and the semantic web, E. Sanchez (ed.), Elsevier (2006) 341–360
Vojtáš, P.: A fuzzy EL description logic with crisp roles and fuzzy aggregation for web consulting. In: Proc. IPMU’2006, B. Bouchon-Meunier et al. (eds.), EDK (2006), 1834– 1841
16. Vojtáš, P.: Fuzzy logic programming, Fuzzy Sets and Systems, 124(3) (2001) 361–370
Yaghob J., Zavoral, F.: Semantic Web Infrastructure using DataPile. In WI-IATW ’06 (2006), Los Alamitos, California, ISBN 0-7695-2749-3, 630–633
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gurský, P. et al. (2008). Knowledge Processing for Web Search — An Integrated Model. In: Badica, C., Paprzycki, M. (eds) Advances in Intelligent and Distributed Computing. Studies in Computational Intelligence, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74930-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-74930-1_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74929-5
Online ISBN: 978-3-540-74930-1
eBook Packages: EngineeringEngineering (R0)