Nothing Special   »   [go: up one dir, main page]

Skip to main content

Qualitative Temporal and Spatial Reasoning Revisited

  • Conference paper
Computer Science Logic (CSL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4646))

Included in the following conference series:

Abstract

Establishing local consistency is one of the main algorithmic techniques in temporal and spatial reasoning. In this area, one of the central questions for the various proposed temporal and spatial constraint languages is whether local consistency implies global consistency. Showing that a constraint language Γ has this “local-to-global” property implies polynomial-time tractability of the constraint language, and has further pleasant algorithmic consequences.

In the present paper, we study the “local-to-global” property by making use of a recently established connection of this property with universal algebra. Specifically, the connection shows that this property is equivalent to the presence of a so-called quasi near-unanimity polymorphism of the constraint language. We obtain new algorithmic results and give very concise proofs of previously known theorems. Our results concern well-known and heavily studied formalisms such as the point algebra and its extensions, Allen’s interval algebra, and the spatial reasoning language RCC-5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abian, A.: Categoricity of denumerable atomless boolean rings. Studia Logica 30(1), 63–67 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  • Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  • Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  • Bodirsky, M., Chen, H.: Oligomorphic clones. Algebra Universalis (to appear, 2007)

    Google Scholar 

  • Bodirsky, M., Chen, H.: Quantified equality constraints. In: Proceedings of LICS 2007 (to appear, 2007)

    Google Scholar 

  • Bodirsky, M., Dalmau, V.: Datalog and constraint satisfaction with infinite templates. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 646–659. Springer, Heidelberg (2006) (A journal version is available from the webpage of the first author, 2006)

    Chapter  Google Scholar 

  • Bennett, B.: Spatial reasoning with propositional logics. In: International Conference on Knowledge Representation and Reasoning, Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  • Bulatov, A., Jeavons, P., Krokhin, A.: The complexity of constraint satisfaction: An algebraic approach (a survey paper). In: Structural Theory of Automata, Semigroups and Universal Algebra (Montreal, 2003). NATO Science Series II: Mathematics, Physics, Chemistry, pp. 181–213 (2005)

    Google Scholar 

  • Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation 16(3), 359–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Bodirsky, M.: The core of a countably categorical structure. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 100–110. Springer, Heidelberg (2005)

    Google Scholar 

  • Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math. Z. 143, 165–174 (1974)

    Article  MathSciNet  Google Scholar 

  • Chen, H.: The computational complexity of quantified constraint satisfaction. Ph.D. thesis, Cornell University (August 2004)

    Google Scholar 

  • Cohen, D., Jeavons, P.: The complexity of constraint languages. Appears in: Handbook of Constraint Programming (2006)

    Google Scholar 

  • Duentsch, I.: Relation algebras and their application in temporal and spatial reasoning. Artificial Intelligence Review 23, 315–357 (2005)

    Article  MATH  Google Scholar 

  • Dechter, R., van Beek, P.: Local and global relational consistency. TCS 173(1), 283–308 (1997)

    Article  MATH  Google Scholar 

  • Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  • Evans, D.: Examples of aleph-zero categorical structures. Automorphisms of first-order structures, 33–72 (1994)

    Google Scholar 

  • Fisher, M., Gabbay, D., Vila, L.: Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  • Fraïssé, R.: Theory of Relations. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  • Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM 29(1), 24–32 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1999)

    Article  MathSciNet  Google Scholar 

  • Hirsch, R.: Relation algebras of intervals. Artificial Intelligence Journal 83, 1–29 (1996)

    Article  MathSciNet  Google Scholar 

  • Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  • Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. AI 101(1-2), 251–265 (1998)

    MATH  MathSciNet  Google Scholar 

  • Jonsson, P., Drakengren, T.: A complete classification of tractability in RCC-5. J. Artif. Intell. Res. 6, 211–221 (1997)

    MATH  MathSciNet  Google Scholar 

  • Koubarakis, M.: From local to global consistency in temporal constraint networks. Theor. Comput. Sci. 173(1), 89–112 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Koubarakis, M.: Tractable disjunctions of linear constraints: Basic results and applications to temporal reasoning. Theoretical Computer Science 266, 311–339 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Kautz, H., van Beek, P., Vilain, M.: Constraint propagation algorithms: A revised report. Qualitative Reasoning about Physical Systems, 373–381 (1990)

    Google Scholar 

  • Ladkin, P.B., Maddux, R.D.: On binary constraint problems. Journal of the Association for Computing Machinery 41(3), 435–469 (1994)

    MATH  MathSciNet  Google Scholar 

  • Mackworth, A.K.: Consistency in networks of relations. AI 8, 99–118 (1977)

    MATH  Google Scholar 

  • Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Conference on Principles on Knowledge Representation and Reasoning (KR 1992), pp. 165–176 (1992)

    Google Scholar 

  • Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. Artif. Intell. 108(1-2), 69–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. Handbook of Spatial Logics (to appear, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Duparc Thomas A. Henzinger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodirsky, M., Chen, H. (2007). Qualitative Temporal and Spatial Reasoning Revisited. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74915-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74914-1

  • Online ISBN: 978-3-540-74915-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics