Abstract
Assessing the quality of a clustering’s outcome is a challenging task that can be cast in a number of different frameworks, depending on the specific subtask, like estimating the right clusters’ number or quantifying how much the data support the partition given by the algorithm. In this paper we propose a computational intensive procedure to evaluate: (i) the consistence of a clustering solution, (ii) the informativeness of each feature and (iii) the most suitable value for a parameter. The proposed approach does not depend on the specific clustering algorithm chosen, it is based on random permutations and produces an ensemble of empirical probability distributions of an index of quality. Looking to this ensemble it is possible to extract hints on how single features affect the clustering outcome, how consistent is the clustering result and what’s the most suitable value for a parameter (e.g. the correct number of clusters). Results on simulated and real data highlight a surprisingly effective discriminative power.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Antoniol, G., Ceccarelli, M., Maratea, A., Russo, F.: classification of digital terrain models through fuzzy clustering: an application. In: Di Gesù, V., Masulli, F., Petrosino, A. (eds.) WILF 2003. LNCS (LNAI), vol. 2955, pp. 174–182. Springer, Heidelberg (2006)
Archie, J.W.: A randomization Test for Phylogenetic information in Systematic Data. Syst. Zool. 38, 239–252 (1989)
Baldi, P., Ceccarelli, M., Maratea, A.: An approach to multifactorial microarray data analysis. In: BITS 2007, Naples (2007)
Ben-Hur, A., Elisseeff, A., Guyon, I.: A Stability Based Method for Discovering Structure in Clustered Data. In: Proceedings of the Pacific Symposium on Biocomputing Kaua’i, HI (2002)
Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1996)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)
Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a Clustering Procedure. Bioinformatics 19(9), 1090–1099 (2003)
Fridlyand, J., Dudoit, S.: Applications of resampling methods to estimate the number of clusters and to improve the accuracy of a clustering method, Stat. Berkeley Tech. Report No. 600 (2001)
Golub, T.R., Slonim, K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lande, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)
Heer, J., Chi, E.: Mining the Structure of User Activity using Cluster Stability. In: Proceedings of the Workshop on Web Analytics, SIAM Conference on Data Mining (2002)
McShane, L.M., Radmacher, M.D., Friedlin, B., Yu, R., Li, M.C., Simon, R.: Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18, 1462–1469 (2002)
Smolkin, M., Ghosh, D.: Cluster Stability Scores for Microarray Data in Cancer Studies. BMC Bioinformatics 4(36) (2003)
Watanabe, S.: Knowing and Guessing: A Quantitative Study of Inference and Information. Wiley, New York (1969)
Author information
Authors and Affiliations
Editor information
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ceccarelli, M., Maratea, A. (2007). Assessing Clustering Reliability and Features Informativeness by Random Permutations. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_107
Download citation
DOI: https://doi.org/10.1007/978-3-540-74829-8_107
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74828-1
Online ISBN: 978-3-540-74829-8
eBook Packages: Computer ScienceComputer Science (R0)