Abstract
A clustering method is presented which can be applied to relational knowledge bases. It can be used to discover interesting groupings of resources through their (semantic) annotations expressed in the standard languages employed for modeling concepts in the Semantic Web. The method exploits a simple (yet effective and language-independent) semi-distance measure for individuals, that is based on the resource semantics w.r.t. a number of dimensions corresponding to a committee of features represented by a group of concept descriptions (discriminating features). The algorithm is an fusion of the classic Bisecting k-Means with approaches based on medoids since they are intended to be applied to relational representations. We discuss its complexity and the potential applications to a variety of important tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)
Baader, F., Küsters, R.: Non-standard inferences in description logics: The story so far. In: Gabbay, D., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic. New Logics for the XXIst Century. International Mathematical Series, vol. 4, Plenum Publishers, New York (2005)
Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description logics. In: Horrocks, I., Sattler, U., Wolter, F. (eds.) Working Notes of the International Description Logics Workshop, Edinburgh, UK. CEUR Workshop Proceedings, vol. 147 (2005)
d’Amato, C., Fanizzi, N., Esposito, F.: Reasoning by analogy in description logics through instance-based learning. In: Tummarello, G., Bouquet, P., Signore, O. (eds.) Proceedings of Semantic Web Applications and Perspectives, 3rd Italian Semantic Web Workshop, SWAP 2006. CEUR Workshop Proceedings, Pisa, Italy, vol. 201 (2006)
Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases. In: Proceedings of the 2nd Conference of ACM SIGKDD, pp. 226–231. ACM Press, New York (1996)
Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive description logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–113. Springer, Heidelberg (2004)
Hirano, S., Tsumoto, S.: An indiscernibility-based clustering method. In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R., Zhang, B. (eds.) 2005 IEEE International Conference on Granular Computing, pp. 468–473. IEEE Computer Society Press, Los Alamitos (2005)
Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, NJ (1988)
Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, England (1990)
Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)
Ng, R., Han, J.: Efficient and effective clustering method for spatial data mining. In: VLDB 1994. Proceedings of the 20th Conference on Very Large Databases, pp. 144–155 (1994)
Nienhuys-Cheng, S.-H.: Distances and limits on herbrand interpretations. In: Page, D.L. (ed.) Inductive Logic Programming. LNCS, vol. 1446, pp. 250–260. Springer, Heidelberg (1998)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston, MA (1991)
Sebag, M.: Distance induction in first order logic. In: Džeroski, S., Lavrač, N. (eds.) Inductive Logic Programming. LNCS, vol. 1297, pp. 264–272. Springer, Heidelberg (1997)
Stepp, R.E., Michalski, R.S.: Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence 28(1), 43–69 (1986)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fanizzi, N., d’Amato, C., Esposito, F. (2007). A Hierarchical Clustering Procedure for Semantically Annotated Resources. In: Basili, R., Pazienza, M.T. (eds) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. AI*IA 2007. Lecture Notes in Computer Science(), vol 4733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74782-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-74782-6_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74781-9
Online ISBN: 978-3-540-74782-6
eBook Packages: Computer ScienceComputer Science (R0)