Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hierarchical Clustering Procedure for Semantically Annotated Resources

  • Conference paper
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing (AI*IA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4733))

Included in the following conference series:

Abstract

A clustering method is presented which can be applied to relational knowledge bases. It can be used to discover interesting groupings of resources through their (semantic) annotations expressed in the standard languages employed for modeling concepts in the Semantic Web. The method exploits a simple (yet effective and language-independent) semi-distance measure for individuals, that is based on the resource semantics w.r.t. a number of dimensions corresponding to a committee of features represented by a group of concept descriptions (discriminating features). The algorithm is an fusion of the classic Bisecting k-Means with approaches based on medoids since they are intended to be applied to relational representations. We discuss its complexity and the potential applications to a variety of important tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Baader, F., Küsters, R.: Non-standard inferences in description logics: The story so far. In: Gabbay, D., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic. New Logics for the XXIst Century. International Mathematical Series, vol. 4, Plenum Publishers, New York (2005)

    Google Scholar 

  3. Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description logics. In: Horrocks, I., Sattler, U., Wolter, F. (eds.) Working Notes of the International Description Logics Workshop, Edinburgh, UK. CEUR Workshop Proceedings, vol. 147 (2005)

    Google Scholar 

  4. d’Amato, C., Fanizzi, N., Esposito, F.: Reasoning by analogy in description logics through instance-based learning. In: Tummarello, G., Bouquet, P., Signore, O. (eds.) Proceedings of Semantic Web Applications and Perspectives, 3rd Italian Semantic Web Workshop, SWAP 2006. CEUR Workshop Proceedings, Pisa, Italy, vol. 201 (2006)

    Google Scholar 

  5. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

    Google Scholar 

  6. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases. In: Proceedings of the 2nd Conference of ACM SIGKDD, pp. 226–231. ACM Press, New York (1996)

    Google Scholar 

  7. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive description logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–113. Springer, Heidelberg (2004)

    Google Scholar 

  8. Hirano, S., Tsumoto, S.: An indiscernibility-based clustering method. In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R., Zhang, B. (eds.) 2005 IEEE International Conference on Granular Computing, pp. 468–473. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  9. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, NJ (1988)

    MATH  Google Scholar 

  10. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  11. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, England (1990)

    Google Scholar 

  12. Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)

    Article  MATH  Google Scholar 

  13. Ng, R., Han, J.: Efficient and effective clustering method for spatial data mining. In: VLDB 1994. Proceedings of the 20th Conference on Very Large Databases, pp. 144–155 (1994)

    Google Scholar 

  14. Nienhuys-Cheng, S.-H.: Distances and limits on herbrand interpretations. In: Page, D.L. (ed.) Inductive Logic Programming. LNCS, vol. 1446, pp. 250–260. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston, MA (1991)

    MATH  Google Scholar 

  16. Sebag, M.: Distance induction in first order logic. In: Džeroski, S., Lavrač, N. (eds.) Inductive Logic Programming. LNCS, vol. 1297, pp. 264–272. Springer, Heidelberg (1997)

    Google Scholar 

  17. Stepp, R.E., Michalski, R.S.: Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence 28(1), 43–69 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Basili Maria Teresa Pazienza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanizzi, N., d’Amato, C., Esposito, F. (2007). A Hierarchical Clustering Procedure for Semantically Annotated Resources. In: Basili, R., Pazienza, M.T. (eds) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. AI*IA 2007. Lecture Notes in Computer Science(), vol 4733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74782-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74782-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74781-9

  • Online ISBN: 978-3-540-74782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics