Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distributed Memorization for the k -Vertex Cover Problem

  • Conference paper
Parallel and Distributed Processing and Applications (ISPA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4742))

  • 798 Accesses

Abstract

We present the first investigation of the well-known memorization technique for solving the k -Vertex Cover problem in a distributed setting. Memorization was introduced by Robson [15] in his paper on solving the Maximum Independent Set problem. The idea is to augment a recursive algorithm with the capability to store subproblem instances and solutions of bounded size in a table that can be quickly referenced, so that subproblems are guaranteed to be solved exactly once. This approach has recently been applied with success to improve the complexity of the fixed-parameter tractable algorithms for solving the k -Vertex Cover problem [12,5]. We present a general parallel approach for using memorization to solve the k -Vertex Cover problem where the subgraphs are precomputed [12]. In this case, the subgraphs and corresponding solutions are generated in a preprocessing step, rather than during the recursion. Our technique makes efficient use of the processors generating the lookup table, while at the same time requiring less space. We describe a distributed algorithm using this technique, well-suited to cluster or grid computing platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable parallel algorithms for FPT problems. Algorithmica 45, 269–284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kernelization algorithms for the vertex cover problem: Theory and experiments. In: ALENEX. Proceedings of the ACM-SIAM Workshop on Algorithm Engineering and Experiments, pp. 62–69. ACM Press, New York (2004)

    Google Scholar 

  3. Akl, S.G., Gries, D.R., Stojmenović, I.: An optimal parallel algorithm for generating combinations. Information Processing Letters 33, 135–139 (1990)

    Article  Google Scholar 

  4. Baldwin, N.E., Collins, R.L., Leuze, M.R., Langston, M.A., Symons, C.T., Voy, B.H.: High-performance computational tools for motif discovery. In: Proceedings of the IEEE International Workshop on High Performance Computational Biology, pp. 192–199. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  5. Chandran, L.S., Grandoni, F.F.: Refined memorization for vertex cover. Information Processing Letters 93, 125–131 (2005)

    Article  MathSciNet  Google Scholar 

  6. Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving large FPT problems on coarse grained parallel machines. Journal of Computer and System Sciences 67, 691–706 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: A parallel FPT application for clusters. In: CCGrid. Proceedings of the IEEE-ACM International Symposium on Cluster Computing and the Grid, pp. 70–77. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  8. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for VERTEX COVER. In: The 31st International Symposium on Mathematical Foundations of Computer Science (MFC), pp. 238–249 (2006)

    Google Scholar 

  9. Dehne, F.: Guest editor’s introduction. Algorithmica Special Issue on Coarse Grained Parallel Algorithms 24, 173–176 (1999)

    MATH  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  11. Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computations, pp. 85–104. Plenum Press, New York (1972)

    Google Scholar 

  12. Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. Journal of Algorithms 47, 63–77 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Pinchak, C., Lu, P., Schaeffer, J., Goldenberg, M.: Practical heterogeneous placeholder scheduling in overlay metacomputers: Early experiences. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 85–105. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Pinchak, C., Lu, P., Schaeffer, J., Goldenberg, M.: The Canadian Internetworked Scientific Supercomputer. In: Proceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications (HPCS), pp. 193–199 (2003)

    Google Scholar 

  15. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7, 425–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical Report LaBRI Université Bordeaux I 1251-01 (2001)

    Google Scholar 

  17. Stojmenović, I.I.: Listing combinatorial objects in parallel. International Journal of Parallel, Emergent and Distributed Systems 21, 127–146 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan Stojmenovic Ruppa K. Thulasiram Laurence T. Yang Weijia Jia Minyi Guo Rodrigo Fernandes de Mello

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taillon, P.J. (2007). Distributed Memorization for the k -Vertex Cover Problem. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds) Parallel and Distributed Processing and Applications. ISPA 2007. Lecture Notes in Computer Science, vol 4742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74742-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74742-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74741-3

  • Online ISBN: 978-3-540-74742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics