Nothing Special   »   [go: up one dir, main page]

Skip to main content

Topology Aware Internet Traffic Forecasting Using Neural Networks

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

  • 1971 Accesses

Abstract

Forecasting Internet traffic is receiving an increasing attention from the computer networks domain. Indeed, by improving this task efficient traffic engineering and anomaly detection tools can be developed, leading to economic gains due to better resource management. This paper presents a Neural Network (NN) approach to predict TCP/IP traffic for all links of a backbone network, using both univariate and multivariate strategies. The former uses only past values of the forecasted link, while the latter is based on the neighbor links of the backbone topology. Several experiments were held by considering real-world data from the UK education and research network. Also, different time scales (e.g. every ten minutes and hourly) were analyzed. Overall, the proposed NN approach outperformed other forecasting methods (e.g. Holt-Winters).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babiarz, R., Bedo, J.: Internet Traffic Mid-term Forecasting: A Pragmatic Approach Using Statistical Analysis Tools. In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 111–121. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Internet Traffic Forecasting using Neural Networks. In: Proceedings of the IEEE 2006 International Joint Conference on Neural Networks, Vancouver, Canada, pp. 4942–4949. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  3. Cortez, P., Rocha, M., Neves, J.: Evolving Time Series Forecasting ARMA Models. Journal of Heuristics 10(4), 415–429 (2004)

    Article  Google Scholar 

  4. Getoor, L., Diehl, C.P.: Link Mining: A Survey. SIGKDD Explorations 7(2), 3–13 (2005)

    Article  Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, NY, USA (2001)

    MATH  Google Scholar 

  6. He, Q., Dovrolis, C., Ammar, M.: On the Predictability of Large Transfer TCP Throughput. In: Proc. of SIGCOMM’05, Philadelphia, USA, ACM Press, New York (2005)

    Google Scholar 

  7. Jiang, J., Papavassiliou, S.: Detecting Network Attacks in the Internet via Statistical Network Traffic Normality Prediction. Journal of Network and Systems Management 12, 51–72 (2004)

    Article  Google Scholar 

  8. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based Change Detection: Methods, Evaluation, and Applications. In: Proc. of Internet Measurment Conference (IMC’03), Miami, USA, ACM Press, New York (2003)

    Google Scholar 

  9. Lapedes, A., Farber, R.: Non-Linear Signal Processing Using Neural Networks: Prediction and System Modelling. Tech. Rep. LA-UR-87-2662, Los Alamos National Laboratory, USA (1987)

    Google Scholar 

  10. Makridakis, S., Weelwright, S., Hyndman, R.: Forecasting: Methods and Applications. John Wiley & Sons, New York, USA (1998)

    Google Scholar 

  11. Moller, M.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4), 525–533 (1993)

    Article  Google Scholar 

  12. Papagiannaki, K., Taft, N., Zhang, Z., Diot, C.: Long-Term Forecasting of Internet Backbone Traffic. IEEE Trans. on Neural Networks 16(5), 1110–1124 (2005)

    Article  Google Scholar 

  13. R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2006), ISBN 3-900051-00-3, http://www.R-project.org

  14. Reinsel, G.: Elements of Multivariate Time Series Analysis, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  15. Stallings, W.: SNMP, SNMPv2, SNMPv3 and RMON 1 and 2. Addison-Wesley, London, UK (1999)

    Google Scholar 

  16. Tang, Z., Fishwick, F.: Feed-forward Neural Nets as Models for Time Series Forecasting. ORSA Journal of Computing 5(4), 374–386 (1993)

    MATH  Google Scholar 

  17. Taylor, J., Menezes, L., McSharry, P.: A Comparison of Univariate Methods for Forecasting Electricity Demand Up to a Day Ahead. Int. Journal of Forecasting 21(1), 1–16 (2006)

    Article  Google Scholar 

  18. Tong, H., Li, C., He, J.: Boosting Feed-Forward Neural Network for Internet Traffic Prediction. In: Proc. of the IEEE 3rd Int. Conf. on Machine Learning and Cybernetics, Shanghai, China, pp. 3129–3134. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  19. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, 2nd edn. Morgan Kaufmann, San Francisco, CA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cortez, P., Rio, M., Sousa, P., Rocha, M. (2007). Topology Aware Internet Traffic Forecasting Using Neural Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics